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Introduction

Collective optical processes capable of developing under conditions of resonant interaction
and the relative weakness of relaxation mechanisms are characterized by a high consistency of
light field oscillations and polarization of the medium. Factors that can violate the coherence
of the field and polarization and significantly.complicate the dynamics of this kind of ultrafast
optical processes include dipole-dipole interaction. Its arising is typical of a substance with
a high concentration of active centers.and relatively large dipole moments attractive to these
structural elements — the so-called detise resonant media.

Itis believed that similar materials are also represented by semiconductor quantum-sized
heterostructures that resonantly. respond to radiation in the exciton region of the spectrum
[1]. Similar structures are also a convenient experimental and theoretical model for study-
ing the dynamics of coherent effects [2; 3]. Based on them, in a thin-film design, nonlinear
modulating clements _are developed in compact optical information processing devices.
The study of the.dynamics of their reaction to radiation in a coherent mode of interaction
between the optical field and the active medium is therefore a nontrivial and practically
important problem.

1. Computation model
Inthis regard, the problem of modeling the dynamics of reflection of a resonantly polariz-
able film in the framework of a semiclassical approach using the hyperfine layer approxima-
tion was posed [4]. The nonlinear response of the medium is described by the equations of
the quantum-mechanical density matrix, and the field (incident from outside £, reflected £,
transmitted 7, and acting on dipole atoms) by the relations obtained from the electrodynamic
conditions for the fields and the boundary layer with resonant polarization:
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Here p and » are the variable variables of polarization and population difference, u is the
matrix element of the dipole transition, N is the concentration of active dipoles, 7', and 7', are
the times of longitudinal and irreversible phase relaxation, » u / are refractive index and layer
thickness, 7, is the reflection coefficient of the layer.

System (1) is modified taking into account the contribution to the field of the near fields of
clementary dipoles acting on the active centers. The frequency detuning from the resonance @,
then depends on the population difference and, therefore, is non-linear. Model parameters of the
medium were chosen for quantum-sized structures based on InGaAs, following the data of [5].

2. Reflection of a quasi-continuous light field
Inthe case of optical field with continuous envelope probing a resonant film, the reflected
radiation field receives an expressed nutational structure. The variant of the quasi-continuous
signal of the effect corresponded to the temporal distribution of the bending intensity of the
applied field, defined by the dependence

e'(7) =e’olexp(7/A7) — exp(—7/A7))/[exp(7/A7) + exp(-7/A7)], (Fig. 1, a),

the value of Dt in this case is determined by the steepness of the growth of tension at the
initial stage of exposure.
Figure 1 for a different level of excitation and unsaturated absorption, calculated as

K= /lea)oT 2/ &hc, shows a time pattern of ‘the intensity of the normalized reflected field

e, = uk/hax .

Looking for the dependencies, the options for calculating the power of the reflected signal
are presented mainly by a envelope series of pulsations, which encompass the high-frequency
carrier component and attenuate to-an equilibrium value. Power oscillations arise as a result of
nutation vibrations of dipole particles representing active centers in the film material matrix.
The damping of the pulsations in the interaction scheme with a relatively slow irreversible
phase relaxation is causeéd by a violation of the field coherence and the polarization response
of the medium due to the shift in the natural frequencies of the active dipoles due to their
mutual influence due to the near fields.

The emergence of the substructure “started” from a certain power value (Fig. 1, b;
1, ¢). The increase in the applied power, with other fixed parameters, led to a reduction in
the transition period in the output to the ripple mode. At the same time, the frequency of
nutation pulsations increased, their contrast decreased (Fig. 4, b - ¢). These regularities of
the temporal pattern are to a certain extent similar to how the structure of laser radiation in
the free-lasing mode changes with increasing excitation level (pumping rate). An increase
in the resonance absorption index, however, changes the picture of the nutational pulsations
in another way — the contrast and the duty cycle increases, while the frequency of their
repetition decreases (Fig. 1, g - m).

The presence of two opposing trends in the development of a picture when these
basic characteristics change, which can be changed in the experiment, makes it possible
that with a certain combination of them, the optimal variant of the process is possible,
when a series of nutation pulsations will be represented by self-oscillations of power in
reflected radiation.
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Fig- 1- Tempc>ral dependence ofthe normalized intensity of reflected field;
avis incident signal shape, b- €'0=0.05, c - €'0=0.15, d - €'0=0.25, e - €'0=0.5,
f-e0=125«K=2;9- W= =35 - kK=4,k-k=5/1- K=6m- k=9,
e'0= 0.5, y =0.0078, r2= 400, o 0= 1.45-10urad/s

For quasistationary envelopes of variables of field strengths and resonant polarization,
system (1) is reduced to the optical Bloch equations. Below are the results of the analysis of
the equilibrium states of the model in the framework of the mathematical theory of stability.

3. Analysis of the stability of the analogue of the initial oscillator model
The calculated evaluation of the properties of the quasi-equilibrium states of the source
model (1) was carried out within the framework of a linear analysis of the stability of the
quasistationary analogue of the model. This means considering the dynamical system for
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relatively slow field envelopes and polarization, that is, similar to [2], the quasistationary
approximation of model (1) was used.

The transition to this approximate oscillatory system is trivial; it is formulated for rela-
tively slowly varying amplitudes and fields and polarization. By solving the system with a
high degree of coincidence, regularities of the reflection processes calculated for the variants
of Figure 1 can be described. In the accepted normalization, quasistationary equations for
amplitudes p(7), ¢'(t) and the envelope of the population difference n(z) are written as follows:
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It is further assumed that the probability amplitude of polarization can be represented
as p = R+iS and ¢, () = e,. Accordingly, the kinetic system for these variables is presented
in this form [6]:
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The expressions for the equilibrium states R, S, and ng of system (2) are not difficult
to determine from the singular limits of the corresponding equations (the expression for the
dependence e’ on n):
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From expressions (3) it follows that with certain combinations of coefficients (2) the
stationary value of ns can be.determined depending on the magnitude of the power e’
ambiguously. It is known that the equilibrium states of models describing radiation when it
is nonlinear resonantly interacting with a thin polarizable layer are characterized by a special
property — the so-called bistability [7].

It is casy to verify that after separation of the real root, the characteristic equation for the
exponent index 4, which determines the temporal dynamics of solutions for relatively small
variations of the variables AR, AS and An in the neighborhood of (3) with the factor exp(i7),
is represented as:

2
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Fig. 2- The dependence ofthe real part ofthe'root ofthe characteristic equation (4) on the excitation
parameter (a, b) and the temporal dependence of the normalized intensity of self-pulsations in the
reflected radiation (c - f);
k= 125(a, C),d - k="15.0; k= 16.0(i, d); k= 185 (/); e'0=1.3 (c, €),
2.2 (d,f); r=0.08, r2=500, Tr1AS/1&*pag/c

The complex roots of equation (4) can be expressed as follows:

_KnS 1
n 2= 2 A - B + - 2 — S
3 \ 2 b1l
Thus, ifthe following relation
1
v=A- B+— > 0, ®)
3 "2 4 )

is true, the attractor of system (2) can be a limit cycle. The frequency Q of cyclic motion
of a point in phase space along a phase curve curled up to a limit cycle is calculated as

Q =V3(A+B)/2.

Calculated estimates of the existence conditions of the self-oscillating regime of the
nutational instability of variables based on (3), (4), (5) are more convenient to carry out
parametrically, that is, setting the parameter linearly increasing within (0, 1) (Fig. 2, a, b).
It should be noted that the dependence curves y (e® are resonant in nature. In this case, the



78 BECWK MAY ima A. A. KYNTALUOBA Ne 1 (55) « 2020

resonance is deformed in such a way that the dependence y (e® in a certain region of the
excitation parameter e0is ambiguous (this region is highlighted in the dependences shown in
Fig. 2, a, b). This expresses bistability property mentioned above and such feature of equi-
librium state characteristic, in general, characterizes the possibility of spontaneous instability
and the transition of the nonlinear oscillatory system excited in such a bistability range to the
self-oscillation regime.

Variants ofthe modeling ofthe dependence erXr) basing on scheme (1) in Fig. 2, c - f were
obtained for system parameters (1), approximately corresponding to condition (5) of the in-
stability of the equilibrium state. It is clearly noticeable that the carrier oscillations with the
optical frequency after the transitional evolution stage are modulated by the lower-frequency.
periodic envelope of nutational origin.

Conclusion

Obviously, nutationvibrations can cause a regularpattern of intensity in radiation reflected
by a thin layer of a semiconductor structure with quantum-well effects modeled by a dense
resonant medium. The occurrence of a series of self-sustaining pulsations.is'a consequence
ofthe nonlinear phase shift of the absorption spectral line caused by the mutual influence of
the near fields of dipoles under conditions of their relatively high concentration. The balance
of oscillations of the resonance response generated by the optical'nutation of dipole active
centers and the effect of dipole-dipole interaction can lead to regular modulation ofthe initially
continuous probing signal even under conditions of a certainuinfluence of irreversible phase
relaxation. This property of resonant reflection can be taken into account when developing
lasers emitting series of short pulses with controlled parameters.
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Tumomenko E. B., IOpesnd 10.B. MOJAEJIMPOBAHUE HYTAITMOHHBIX KOJIEBA-
HUM B U3JIYYEHUN, OTPAXKEHHOM TOHKHM PE3OHAHCHBIM CJIOEM.

B pamrax nonyxnaccuueckoti ocyuniamopHoil MOOe ¢ NPUMEHEHUEM Memoo08 MAmMeMamuiecKoil
meopuy Yemouuusocmy OUHAMUYCCKUX CUCHIEM U YUCTEHHO20 AHANUA NPeOCKA3AHA BO3MONCHOCHIb
MOOVAAYUY UTYUCHUSA HPU PESOHAHCHOM OMPAXCEHUY 8 PeHCUME KO2ePeHIMHO20 83aUMOOCTICIEUS NOTs
€ 6enjecmeom MOHKO20 COA.

KiroueBble c/1oBa: TOHKHI ITIaHAPHBIHA CIIOK PE30HAHCHBIX aTOMOB, JAUIIONb-JUIIONIEHOE B3aUMO-
JielicTBHE, CaMOITyJIbCAITUN W3TyIEHIS.





