УДК 535.181

# РАСЧЁТ ЭФФЕКТИВНОСТИ БИСТАБИЛЬНОГО ТОНКОПЛЁНОЧНОГО ОТРАЖАТЕЛЯ

Е.В. Тимощенко<sup>1</sup>, Ю.В. Юревич<sup>2</sup>

<sup>1</sup>Могилёвский государственный университет им. А.А. Кулешова <sup>2</sup>Могилёвский государственный университет продовольствия

## ESTIMATION OF THE BISTABLE THIN-FILM REFLECTOR EFFICIENCY

E.V. Timoschenko<sup>1</sup>, Yu.V. Yurevich<sup>2</sup>

<sup>1</sup>Mogilev State A. Kuleshov University <sup>2</sup>Mogilev State University of Food Technologies

Проведена расчётная оценка гистерезисных свойств отражения тонкого слоя на основе плотной резонансной среды на шкале мощности и линейной частотной отстройки внешнего сигнала. Определена роль подобного компактного резонансного отражателя в качестве модулятора добротности резонатора в лазерной схеме.

Ключевые слова: резонансное отражение, плотная резонансная среда, тонкие оптические плёнки, диполь-дипольное взаимодействие, квазирезонансная поляризация.

The analytical evaluation of the hysteresis reflection properties of a thin layer on the basis of a dense resonant medium on the power scale and the linear frequency detuning of the external signal is carried out. The role of such a resonant reflector as a Q-factor (compact modulator) of the resonator in the laser circuit is determined.

Keywords: resonant reflection, thin optical films, dense resonant medium, dipole-dipolar interaction, quasi-resonance polarization.

#### Введение

Из основных функциональных элементов устройств управления светом, широко востребованных в фотонике, нанооптике, опто- и микроэлектронике, особый интерес привлечён к планарным структурам из тонких плёнок, изготовленным на основе активных сред с нелинейностью в области оптического резонанса. Внедрение резонансных слоёв при высокой плотности образующих их активных центров в структуру схемы оптического устройства может без нарушения его компактности обусловить изменение реакции всей системы на излучение [1]. Свойствами плотных резонансных сред обладают исследуемые ныне полупроводниковые наноструктуры [2]. В этих объектах нелинейный отклик на когерентное излучение особо выражен в спектральной области, соответствующей экситонным переходам [3], [4]. В отражении света тонким слоем активной среды в условиях оптического резонанса может быть существенным дополнительный к френелеву отражению (преломлению) нелинейный компонент. Эту переменную составляющую отклика, выражаемую резонансной поверхностной поляризацией, именуют сверхизлучательной [5] именно ввиду того, что в условиях однородного поля в особо тонком слое высвечивание элементарных излучателей (атомов, ионов, экситонов), естественным образом, происходит сфазированно. Фазировка активных центров, образующих среду, в ходе их

высвечивания и составляет суть когерентного оптического эффекта сверхизлучения. В плотной резонансной среде динамическая роль сверхизлучательного компонента в нелинейном отклике возрастает из-за взаимного влияния ближних полей диполей, вызывающего сдвиг резонансной линии [6]. Существенным оказывается также смещение резонансной частоты из-за влияния поглощения в квазирезонансных переходах (в расчётных оценках его учитывают различием поляризуемости активных центров в основном и возбуждённом состояниях [7]).

В настоящей работе изучена зависимость от материальных параметров бистабильных свойств отражения планарной плёнки плотной резонансной среды с учётом возникающих по мере насыщения поглощения взаимосвязанных нелинейных фазовых эффектов.

#### 1 Расчётные соотношения

В основу модели расчёта резонансного отражения плёнок нередко полагают приближение сверхтонкого слоя [8]. Этого подхода будем в дальнейшем придерживаться: длина волны внешнего и действующего в слое светового поля значительно меньше толщины плёнки, действующее на активные центры поле при этом условии однородно.

Бистабильность представляет собой особый эффект, крайнее выражение нелинейности отклика оптической системы, который проявляется в

возможности двух её стабильных состояний при одном и том же значении светового поля внешнего сигнала. В возникновении бистабильности, кроме нелинейности, нужна положительная обратная связь, поэтому кроме активной среды в схеме необходимо внешнее зеркало. Бистабильность в оптическом слое с резонансным откликом называют внутренней [6], поскольку её наблюдение возможно без зеркала. Обратная связь возникает за счёт действия взаимосвязанных нелинейных эффектов, следствия которых в определении стабильных состояний отражения или пропускания слоя могут усиливать или компенсировать друг друга. С бистабильностью связан оптический гистерезис, область которого на шкале уровня возбуждения обозначена резкими переключениями состояний.

Нелинейная реакция среды на плосковолновое однородное световое поле, выражаемая вероятностными переменными резонансной поляризованности  $\rho(t)$  и разности населённостей n(t), описывается квантовомеханическими уравнениими двухуровневой матрицы плотности. Образованная соотношениями для поля и материальными уравнениями согласованная динамическая модель взаимодействия при постоянном уровне возбуждения внешним полем  $E_{t}(t) = E_{0}$  характеризуется равновесными состояниями. Количественно эти состояния определяются нелинейными соотношениями, связывающими стационарные значения переменных с уровнем возбуждения и материальными параметрами.

В работе [9] авторами получен конкретный вид этих соотношений для плотной резонансной среды, в пределах ширины спектральной линии и с учётом смещения частоты резонанса рассчитаны дисперсионные зависимости характеристик равновесных состояний. Расчёты обнаруживают возможность бистабильности равновесных состояний на шкалах зависимости от уровня возбуждения и частотной отстройки от резонанса. Соответственно, в области бистабильности можно ожидать гистерезисное переключение нелинейного пропускания или отражения слоя. В приведенных далее уточнённых расчётах аналогично выводам [7] рассматривается представление комплексной поверхностной поляризованности с учётом обобщённой двухуровневой схемы:

$$P(t) = NI \left[ i\mu p(t) - 2\pi \Delta \alpha \varepsilon_0 \left( 1 - n(t) \right) (t) \right]. (1.1)$$

Здесь E(t) — квазистационарная амплитуда напряжённости действующего на активные центры светового поля,  $\mu$  — средняя величина дипольного момента активных центров,  $\Delta\alpha$  — разность их поляризуемостей в основном и возбуждённом состояниях, Nl — плотность центров (l — толщина слоя, которая считается значительно меньшей по отношению к длине волны). Обобщение схемы в форме (1.1) даёт возможность при определении

условий бистабильности равновесных состояний характеризовать взаимодействие эффектов насыщения поглощения и нелинейного сдвига резонансной частоты диполей  $\omega_0$  из-за влияния их ближних полей в присутствии дрейфа частоты действующего поля  $\omega$  в сторону соседних с основным резонансов поглощения.

Аналогично работам [9], [10] формулируются следующие соотношения для нормированных величин уровня возбуждения  $e_0 = \mu E_0 \sqrt{T_1 T_2} / \hbar$  (то есть, соответствующих интенсивности насыщения резонансного поглощения) и частотной отстройки  $\Delta \omega = (\omega - \omega_0) T_2$ , определяющих стационарную разность населённости  $n_{\rm S}$  и амплитудный нелинейный коэффициент отражения слоя  $r(n_{\rm S})$ :

$$\frac{1 - n_{S}}{n_{S}} \left[ 1 + \beta^{2} (1 - n_{S})^{2} \right] = \frac{e_{0}^{2}}{\left( 1 + \kappa n_{S} \right)^{2} + \Delta^{2}},$$

$$\Delta = \Delta \omega + \gamma \kappa n_{S} - \beta (1 - n_{S}),$$

$$r(n_{S}) = r_{0} + \frac{2 \kappa n_{S}}{\left( \eta + 1 \right) \left[ 1 + \beta^{2} (1 - n_{S})^{2} \right]} \times \frac{1 + (1 + n_{S}) \Delta^{2} + \kappa n_{S}}{\left( 1 + \Delta^{2} + \kappa n_{S} \right)^{2} + \left( \kappa n_{S} \Delta \right)^{2}},$$
(1.2)

где  $\kappa = \mu^2 \omega \, T_2 \, N l / \hbar \, c$   $\epsilon_0$  — параметр резонансной нелинейности поглощения приповерхностного слоя, которым также характеризуют его резонансный (в отсутствие насыщения) показатель поглощения;  $\beta = 2\pi \, \Delta \alpha \, \epsilon_0 \, \hbar \, / \, \mu^2 \, T_2$  — параметр резонансной нелинейности рефракции, обусловленной влиянием квазирезонансной поляризации,  $T_1$  и  $T_2$  — времена продольной и поперечной (фазовой) релаксации,  $\gamma$  — нормировочный коэффициент в локальной поправке Лоренца к действующему полю, пропорциональный отношению длины волны внешнего поля и толщины l,  $r_0$  — френелев коэффициент отражения, определяемый  $\eta$  — нерезонансным показателем преломления слоя.

#### 2 Расчёт гистерезисных характеристик резонансного отражения

Вычисления зависимости r от величины нормированной мощности  $e_0^2$  (не имеющей размерности) на основе решений (1.2) удобно проводить параметрическим расчётом — значения вероятностной переменной  $n_{\rm S}$  лежат в пределах (0, 1). На рисунке 2.1 приведены типичные бистабильные кривые зависимости: на фрагменте a) демонстрируется возникновение гистерезисного изгиба по мере изменения параметра  $\kappa$ , на фрагменте b0) указано направление гистерезисных скачков («кинков») и обозначены характерные размеры гистерезисной петли. Гистерезис при бистабильной (неоднозначной) зависимости отражения от уровня мощности должен проявляться при циклическом изменении  $e_0^2$ .

Изменение нормированной интенсивности возбуждения при расчёте характеристики  $r(e_0^2)$  предполагалось адиабатическим, то есть  $e_0^2$  изменялось настолько медленно, что в каждый момент времени ансамбль диполей, образующих тонкий слой, достигал равновесного (стационарного) состояния.

Расчёты показывают, что точки поворота гистерезисных зависимостей  $r(e_0^2)$  и  $n_s(e_0^2)$  на шкале уровня возбуждения совпадают. Поэтому положение точек поворота  $e_{0cr}^2$  и  $e_{0m}^2$  (рисунок 2.1,  $\delta$ ) определяется элементарным анализом на экстремумы функции  $e_0^2(n_s)$ , выражаемой явно первым из соотношений (1.2). Может быть образовано соответствующее уравнение относительно  $n_{\rm S}$ , и нетрудно показать, что величины экстремумов  $e_{0cr}^2$  и  $e_{0m}^2$ , а также критическое

значение  $r_l = r(e_{0cr}^2)$  и максимальное значение резонансного отражения  $r = r(e_{0m}^2)$ , определяются его неотрицательными корнями:

$$n_{S1,2} = \frac{A+B}{2} \pm \sqrt{\frac{(A-B)^2}{4} - B^2},$$

$$A = 0.5 - \frac{\kappa - CD}{\kappa^2 + C^2},$$

$$B = \sqrt{\frac{1+D^2}{\kappa^2 + C^2 - 2(\kappa - CD)}},$$
(2.1)

где  $C = \kappa \gamma + \beta$ ,  $D = \Delta \omega + \beta$ .

Выражения (2.1) дают возможность расчётной оценки с применением соотношений (1.2) таких характеристик бистабильного отражения как пороговая мощность его проявления ( $e_{0cr}^2$ ), относительная величина «кинка» отражения при гистерезисном переключении

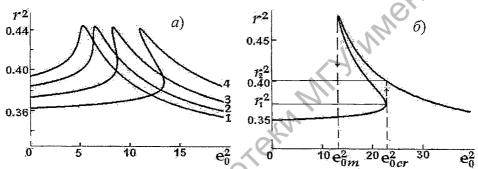



Рисунок 2.1 — Зависимость резонансного отражения от интенсивности (в относительных единицах):  $\kappa = 1.3$  (кривая 1), 1.5 (2), 1.8 (3), 2.2 (4),  $\Delta \omega = -0.5$  (*a*),  $\kappa = 2.5$ ,  $\Delta \omega = -1.0$  (*б*);  $\beta = 0.25$ ,  $\gamma = 3.17$ 

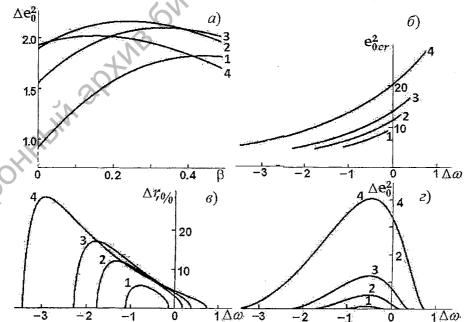



Рисунок 2.2 – Дисперсионные зависимости характеристик гистерезисного отражения тонкого слоя:  $\kappa = 2.0, \Delta \omega = 0$  (кривая 1), -0.25 (2), -0.5 (3), -0.8 (4) (*a*);  $\kappa = 1.6$  (1), 1.8 (2), 2.0 (3), 2.5 (4),  $\beta = 0.25$  (6 – *z*);  $\gamma = 3.17$ 

 $(\Delta r = (r_2/r_1)^2 - 1)$ , а также размер области гистерезиса на шкале мощности  $(\Delta e_0^2 = e_{0cr}^2 - e_{0m}^2)$ . Масштаб явлений примерно соответствует известным из литературы (например, по результатам работ [2]–[4]) параметрам слоёв полупроводниковых квантоворазмерных структур при условии их субмикронной толщины. Этими значениями, в основном, определяется в модельных расчётах диапазон изменения коэффициентов (1.2), (2.1). Значения насыщающей мощности могут иметь порядок не менее  $10^3$  Вт/см<sup>2</sup> в диапазоне длин волн ~  $(1.25 \dots 1.30) \cdot 10^{-6}$ м.

Зависимости на рисунке 2.2, а) указывают на значимость эффекта, обусловленного автомодуляционным смещением частоты светового поля, — от его присутствия существенно зависит ширина гистерезиса.

Кривые на рисунке 2.2,  $\delta$ ) характеризуют зависимость пороговой мощности от линейной отстройки частоты: проявление гистерезиса имеет более низкий порог по мощности на частотах, близких к центру резонансной линии поглощения, смещённому в длинноволновую область спектра из-за диполь-дипольного взаимодействия. В этой же области, судя по ходу кривых на рисунке 2.2,  $\epsilon$ ), большим оказывается гистерезисный скачок отражения. Гистерезис сильно зависит от показателя поглощения, хотя положение частоты, которой определяется оптимум ширины гистерезисной петли, от этого параметра зависит слабо (рисунок 2.2,  $\epsilon$ ).

## 3 Резонансный отражатель в схеме обратной связи лазера

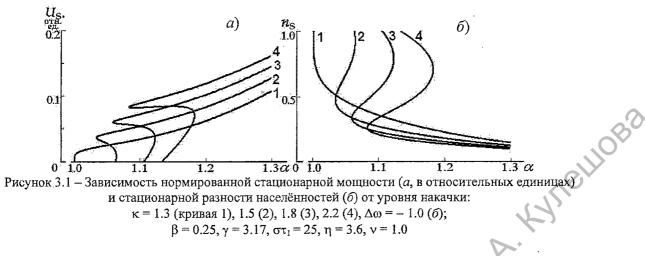
Гистерезисное переключение в схеме обратной связи генерирующего устройства способно без применения в его схеме внешних модулирующих элементов перевести лазерную систему в режим автоколебаний. Поэтому важным представляется анализ следствий бистабильности отражателя в качестве пассивного элемента в пазерах, способных излучать в переходных режимах. На начальном этапе свечения динамика когерентного излучения таких лазеров в силу особого сочетания релаксационных параметров среды и технических характеристик устройства определённо обладает осципляторной структурой.

Приближённый анализ нелинейности, приводящей к бистабильности, для условий резонансного отражения в схеме обратной связи представляется удобным на основе системы кинетических уравнений лазера, аналогичной использованной, например, в [11]. В балансной модели, считающейся классической, рассматривается модель лазера, излучающего в нестационарном режиме, в усреднении поля вынужденного излучения и инверсии по длине активной среды [12]. Лазерная кинетика определяется балансом этих величин, характеризуемых разными временами релаксации. Рассматриваемая ниже

модифицированная динамическая модель характеризуется, однако, тремя степенями свободы: дополнительно учитывается скорость энергообмена поля генерации и активных центров в применяемом в качестве нелинейного отражателя тонком резонансно поглощающем слое (время  $\tau$  нормировано по времени продольной релаксации основного перехода  $T_1$  в двухуровневой схеме усиления):

$$\frac{dU}{d\tau} = \frac{1}{\tau_r} \left[ y - 1 - \frac{1}{\nu} \ln \frac{1}{r_0 r(n)} \right] U,$$

$$\frac{dy}{d\tau} = \alpha - y(1 + U),$$


$$\frac{dn}{d\tau} = \frac{1 - n}{\tau_1} - \frac{n}{1 + \beta^2 (1 - n)^2 (1 + \kappa n)^2 + \Delta^2},$$

$$\Delta = \Delta \omega + \gamma \kappa n - \beta (1 - n),$$
(3.1)

где U - мощность излучения, нормированная по интенсивности насыщения усиления; у - инверсная заселённость, нормированная по пороговому уровню инверсии v; n- мгновенное значение разности населённостей в отражающем слое; определяемое насыщением и обратимостью, обусловленной спонтанными процессами, r(n) — эффективный коэффициент отражения, его мгновенные значения определяются соответствующей зависимостью из схемы расчёта (1.2);  $\tau_{\rm r}$  – время жизни фотона в резонаторе (все временные и частотные параметры в соотношениях (1.2), используемые в системе (3.1), нормированы по времени  $T_1$ );  $\alpha$  – уровень (скорость) накачки; о - отношение сечений перехода в каналах резонансного поглощения и вынужденного излучения.

Физическая ситуация, описываемая нелинейной системой дифференциальных уравнений (3.1), соответствует лазеру с резонатором, одно из зеркал которого представляет собой нелинейный тонкоплёночный отражатель. В отклике его среды на излучение в отличие от работы [11] учтены конечность времени релаксации и обратимость разности населённостей, а также отличие вероятности поглощательного перехода от вероятности вынужденного излучения в канале генерации. Дополнительная модуляция потерь в резонаторе в соответствии с традициионным подходом (согласно приёму, известному например, из [12]) определена логарифмическим компонентом в правой части уравнения дл: нормированной мощности. Уровень накачки 1 ходе генерации поддерживается неизменным.

Представляет интерес расчётная оценка не тривиальных равновесных состояний моделі (3.1) в зависимости от уровня накачки. Соот ветствующие величины определяются из син гулярных пределов системы (3.1). В результат образуется система нелинейных алгебраически уравнений относительно стационарных значени  $U_S$ ,  $y_S$  и  $n_S$ :



$$\kappa = 1.3$$
 (кривая 1), 1.5 (2), 1.8 (3), 2.2 (4),  $\Delta \omega = -1.0$  (6);  $\beta = 0.25$ ,  $\gamma = 3.17$ ,  $\sigma \tau_1 = 25$ ,  $\eta = 3.6$ ,  $\nu = 1.0$ 

$$\alpha = (1 + y_{S})U_{S},$$

$$y_{S} = 1 + \frac{1}{v} \ln \frac{1}{r_{0}r(n_{S})},$$
(3.2)

$$U_{\rm S} = \frac{1 - n_{\rm S}}{\sigma n_{\rm s} \tau_{\rm l}} \left[ 1 + \beta^2 (1 - n_{\rm S})^2 \right] \left[ \left( 1 + \kappa n_{\rm S} \right)^2 + \Delta^2 \right],$$

где стационарные зависимости отражения  $r(n_S)$  и фазовой отстройки  $\Delta(n_{\rm S})$  определяются выражениями схемы (1.2).

Уровень накачки α является постоянным в ходе излучения, но это тот параметр реальной схемы лазера, от которого зависят выходная мощность и временная развёртка генерации, в большинстве устройств его относительно просто/ можно перенастраивать, изменяя от одного включения до другого. Именно поэтому важен расчёт стационарных характеристик схемы от этого параметра. Кроме того, расчёт  $U_{\rm S}(\alpha)$  с применением соотношений (3.2) представляет в нормированной форме приближённую оценку зависимости стационарной мощности генерации лазера от уровня накачки (в усреднении переменных по длине резонатора).

Вычисление зависимостей  $U_S(\alpha)$  и  $n_S(\alpha)$  на основе (3.2) также несложно провести параметрически. Как заметно из вариантов рисунка 3.1, a), б), бистабильность (в данном случае характерный S-образный изгиб кривых) проявляяется выше определённых пороговых значений ненасыщенного поглощения к. Зависимости  $U_{\rm S}(\alpha)$  и  $n_{\rm S}(\alpha)$ , в сущности, представляют собой сильно деформированный резонанс, ориентированный по вертикали (кривые 2-4). Области гистерезиса, которые можно различить аналогично тому, как это сделано на рисунке 2.1,  $\delta$ ), на обеих зависимостях совпадают. Пороговый уровень а, необходимый для выхода системы в генерацию (обязательно  $\alpha > 1$ ), с увеличением показателя поглощения к должен нарастать. Из расчётов, приведенных на рисунке 3.1, а) следует, что лазер с резонансным отражателем представляет собой бистабильное устройство. В динамическом аспекте это просто означает, что при определённом уровне накачки возможен скачок стационарной мощности. Резко падает разность населённостей (рисунок 3.1, б, кривые 2-4), то есть крайне динамично просветляется отражатель происходит переключение ветвей характеристик. При нарастании уровня накачки лазерная система находится на нижней ветви до тех пор, пока её стационарная мощность не достигнет критической точки, в которой происходит «бросок» на верхнюю ветвь. Эти обе ветви S-образной характеристики являются устойчивыми. Промежуточная ветвь (с «реверсом хода» зависимости) не проявляется в адиабатическом режиме – она неустойчива и способна внести вклад в динамику энергообмена среды и поля в импульсном режиме. Такой режим, как правило, и реализуется на переходном этапе развития вынужденного излучения в резонаторе. Известно, что динамическая система, обладающая подобным свойством гистерезисного переключения своего состояния при относительно плавном изменении переменных или уровня внешнего возбуждения, характеризуется внутренней неустойчивостью [2], [6], [11]. Оказывается возможным развитие автоколебательного процесса, то есть перехода к регулярным самоподдерживающимся пульсациям без применения особых, усложняющих схему и синхронизированных с накачкой внешних устройств.

Отметим, что точное определение условий достижения таких режимов в рамках качественного анализа поведения системы (3.1) в окрестности особых точек фазового пространства модели, выражаемых (3.2), а также численное моделирование динамики излучения, представляет отдельную задачу, к разрешению которой авторы намерены обратиться позже.

### Заключение

Результатами работы показано, что резонансный отражатель на основе тонкого слоя плотной резонансной среды, благодаря своим нелинейным свойствам, может представлять бистабильный переключатель в оптической динамической системе. Для материальных параметполупроводниковых квантоворазмерных структур определена область его гистерезисных свойств. В условиях нелинейной фазовой перестройки поля и отклика среды отражателя размер гистерезисной петли в значительной мере определяется начальной частотной отстройкой излучения и центра линии поглощения. Использование подобного отражателя в качестве компактного модулятора добротности лазера (приближённые расчётные оценки проведены для параметров инжекционных лазеров) даёт перспективу достижения практически интересного режима излучения в виде серии регулярных импульсов с относительно невысокой средней мощностью. Характеристиками режима в этом случае можно управлять только уровнем тока накачки, миниатюрность и надёжность устройства при этом, естественно, не нарушаются.

#### ЛИТЕРАТУРА

- 1. Танин, Л.В. Резонансные, голографические и спекл-оптические исследования фазовых, диффузных и зеркальных объектов: автореф. дисс. на соиск. уч. степени доктора физ.-мат. наук: 01.04.05 / Минск, БГУ. 2014. 64 с.
- 2. Каплан, А.Е. Поведение локальных полей в нанорешётках из сильно взаимодействующих атомов: наностраты, гигантские резонансы, «магические» числа и оптическая бистабильность / А.Е. Каплан, С.Н. Волков // УФН.— 2009.— Т. 179, вып. 5.— С. 539—547.
- 3. Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots / P. Borri [et al.] // Phys. Rev. B. 2002. Vol. 66. P. 081306–(1–4).

- 4. Cavigli, L. Optical bistability and laserlike emission in a semiconductor microcavity / L. Cavigli, M. Gurioli // Phys. Rev. B. 2005. Vol. 71, № 3. P. 035317.
- 5. Гадомский, О.Н. Эхо-спектроскопия поверхности / О.Н. Гадомский, Р.А. Власов. Мн.: Навука і тэхніка, 1990. 216 с.
- 6. Маликов, Р.Ф. Оптическая бистабильность и гистерезис тонкого слоя резонансных излучателей: взаимное влияние неоднородного уширения линии поглощения и локального поля Лоренца / Р.Ф. Маликов, В.А. Малышев // Опт. и спектр. 2017. Т. 122, № 6. С. 1000–1009.
- 7. Апанасевич, П.А. Основы теории взаимодействия света с веществом / П.А. Апанасевич. – Мн.: Навука і тэхніка, 1977. – 496 с.
- 8. Юдсон, B.И. Нелинейная резонансная оптика тонких плёнок: метод обратной задачи / В.И. Юдсон, В.И. Рупасов // ЖЭТФ. 1987. Т. 93. С. 494—501.
- 9. *Тимощенко*, *Е.В.* Резонансное отражение света тонким слоем плотной нелинейной среды / Е.В. Тимощенко, Ю.В. Юревич, В.А. Юревич // ЖТФ. 2013. Т. 83, вып. 2. С. 103–106.
- 10. Тимощенко, Е.В. Нелинейная восприимчивость тонкой плёнки плотной резонансной среды / Ю.В. Юревич, Е.В. Тимощенко // Проблемы физики, математики и техники. 2015. № 1 (22). С. 27—31.
- 11. Борисов, В.И. Динамика излучения импульсного лазера с пассивным модулятором на основе тонкой плёнки резонансной среды / В.И. Борисов, Е.В. Тимощенко, Ю.В. Юревич // Вестник Белорусско Российского университета. 2014. Вып. 3 (48). С. 120—126.
- 12. *Ханин*, *Я.И*. Основы динамики лазеров / Я.И. Ханин М.: Наука, 1999. 368 с.

Поступила в редакцию 08.07.19.