МОДЕЛИРОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА ПОЛУРАСПАДА ОТ ЭНЕРГИИ А-РАСПАДА

М. Н. Захарич (ГГУ имени Ф. Скорины) Науч. рук. **О. М. Дерюжскова**, канд. физ.-мат. наук, доцент

Эмпирический закон Гейгера-Неттола достаточно точно описывает зависимость периода полураспада $T_{1/2}$ от энергии α -распада Q_{α} четно-четных ядер [1]:

$$lgT_{1/2} = A + \frac{B}{\sqrt{Q_{\alpha}}}$$
,

где A и B – константы. C учетом констант и заряда дочернего ядра Z связь между $T_{1/2}$ и Q_a может быть представлена в виде:

$$lgT_{1/2} = 9,54 \frac{z^{0.6}}{\sqrt{q_\alpha}} - 51,37$$

где период полураспада $T_{1/2}$ измеряется в секундах, а энергия Q_a – в МэВ [1].

Для моделирования зависимости (1) для тяжелых α -активных четно-четных ядер (80 < Z < 108) воспользуемся системой *Wolfram Mathematica* (рисунок 1).

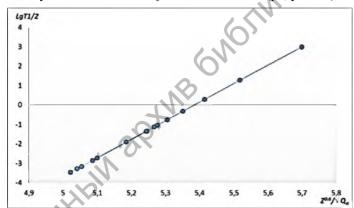


Рисунок 1 — Зависимость логарифмов периода полураспада α -активных четно-четных ядер от $Z^{0.6}/\sqrt{Q}$

Из анализа рисунка 1 следует, что для основной части исследуемых α -активных ядер $lgT_{1/2}$ имеет отрицательные значения. Это свидетельствует о том, что их периоды полураспада составляют 0,1-0,001 доли секунды. Для ядер с нечетным числом нуклонов A и нечетно-нечетных ядер общая картина сохраняется, но $T_{1/2}$ в 2-100 раз больше, чем для четно-четных ядер с теми же Z и Q_α .

Таким образом, закон Гейгера-Неттола позволяет определить период полураспада α -активных ядер по экспериментальным данным о энергии вылетающих при распаде α -частиц.

Литература

1. Ишханов, Б. С. Частицы и атомные ядра : учебник / Б. С. Ишханов, И. М. Капитонов, Н. П. Юдин. – Москва : Издательство ЛКИ, 2007. – 584 с.