УДК 535.34:547.221

В.И. Соколов, И.М. Ашарчук, В.Н. Глебов, И.О. Горячук, А.В. Любешкин, А.М. Малютин, С.И. Молчанова, Ю.Е. Погодина, Е.В. Полунин, К.В. Хайдуков, В.Я. Панченко (Москва, Россия)

ИНТЕГРАЛЬНАЯ ОПТИКА НА ОСНОВЕ ФТОРСОДЕРЖАЩИХ ПОЛИМЕРНЫХ И НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

Дан обзор новых фторсодержащих оптических материалов для создания элементной базы устройств высокоскоростной интегральной оптики. Рассмотрены и исследованы следующие типы материалов.

1. Аморфные перфторированные полимеры, характеризующиеся высокой оптической прозрачностью, низким показателем преломления и материальной дисперсией в видимом и ближнем ИК-диапазонах длин волн. Эти материалы перспективны для создания волноводов и других устройств интегральной оптики, например, высокоскоростных оптоэлектронных печатных плат, в которых электрическая шина ABIX U.

передачи данных на основе металлических проводников дополнена оптической шиной, состоящей из массивов полимерных волноводов, интегрированных в плату.

 Нелинейные полимеры с фторсодержащими хромофорами в боковой цепи, обладающие высоким электрооптическим коэффициентом r_{3s}. Такие материалы имеют сверхмалое время переключения (≈ 10 фс) и применяются для изготовления высокоскоростных интегрально-оптических модуляторов и переключателей.

082

3. Фторидные нанокристаллы, легированные редкоземельными элементами, обладающие сверхвысоким коэффициентом ап- и даун-конверсии (10–20%) при накачке ИК светом с длиной волны 975–980 нм. Нанокристаллы, внедренные в полимерную матрицу, могут использоваться для создания компактных волноводных усилителей, работающих в «телекоммуникационном» С-диапазоне длин волн 1530– 1565 нм, а также одночастотных волноводных лазеров с распределенной обратной связью, генерирующих в видимой и УФ областях спектра.

4. Пленки из простых и сложных фторидов, имеющие сверхнизкий показатель преломления п = 1.24 – 1.26. Они могут применяться в качестве подложек для формирования оптических цепей из перфторполимеров.

Рассмотрены лазерные методы формирования элементов интегрально-оптических устройств с использованием фторсодержащих материалов.

Ключевые слова: аморфные перфторированные полимеры, синтез при сверхвысоком давлении, электрооптические хромофоры, фторидные нанокристаллы, редкоземельные элементы, световедущие пленки, оптические волноводы, усилители, модуляторы.

By using ultra-high pressure technique, amorphous perfluorinated copolymers of dioxoles and ethers were synthesized. The polymers possess high optical transparency in the visible and near IR spectral regions, low refractive index n = 1.307 - 1.324, and are perspective for fabricating integrated optical waveguides. New electro-optical polymers with fluorinated chromophores in the side chain were synthesized. Optical waveguides and splitters were fabricated in electro-optical films using photo-bleaching method, Nanocrystals β -NaLuF₄/Yb³⁺/Er³⁺/Ce³⁺ were synthesized. Compact polymer waveguide amplifiers with embedded nanocrystals emitting in the telecom C – band were fabricated. The coefficient of amplification as high as 1.67 at λ = 975 was achieved in 12 mm long waveguide when pumped by 85 mW diode laser at λ = 975 nm. Films from simple and complex fluorides were fabricated. The films have very low refractive index n = 1.248 - 1.264 and can be used as substrates for fabricating optical waveguides from amorphous perfluorinated polymers.

Keywords: amorphous perfluorinated polymers, synthesis under ultra-high pressure, electro-optical chromophores, fluorinated nanocrystals, rare-earth elements, lightguiding films, optical waveguides, amplifiers, modulators.

nex

Синтез аморфных перфторированных полимеров при сверхвысоком давлении

Создание новых полимерных материалов для видимого и ближнего ИК диапазонов длин волн давно привлекает внимание исследователей [1; 2]. Считается, что лучшими материалами для интегральной оптики являются аморфные перфторированные полимеры [3–5]. В отличие от своих углеводородных аналогов, они имеют более низкое поглощение во всех трех «телекоммуникационных» диапазонах длин волн вблизи 0.85, 1.3 и 1.5 мкм, более низкий показатель преломления n = 1.29 - 1.34 и более низкую материальную дисперсию, которая определяет предельные скорости передачи оптической информации по полимерному волноводу.

В настоящее время аморфные перфторполимеры коммерчески производят лишь несколько фирм, в частности, DuPont (сополимеры типа TeflonAF), Asachi Glass (Cytop), Solvay (Hyflon AD). Для создания аналогичных материалов в России мы использовали метод сверхвысокого давления (10–14 тыс. атм.), позволяющий даже без использования инициаторов синтезировать целевой продукт из мономеров, многие из которых при обычных условиях вообще не вступают в реакцию радикальной полимеризации [6–8]. Этим методом были изготовлены, в частности, гомополимеры гексафторпропилена [6] и перфторизопропилвинилового эфира [7], а также сополимеры различных диоксолов и эфиров [8] (рис. 1).

Рис. 1. Фрагмент структуры сополимера $(D_3)_{1,x}(E_3)_x$, синтезированного при сверхвысоком давлении из диоксола D_3 (слева) и эфира E_3 (справа). x – молярная концентрация эфирных звеньев в макромолекуле сополимера

На рис. 2а приведена дифрактограмма пленки, изготовленной из сополимера $(D_3)_{1-x}(E_3)_x$ с x = 0.5. Видно, что дифрактограмма не содержит резких пиков, но имеет широкие «гало» вблизи $2\theta \approx 15.7$ и 40.1 град, что свидетельствует об аморфности данного перфторированного сополимера. Его показатель преломления *n* немонотонно меняется в зависимости от молярного соотношения диоксола и эфира в макромолекуле и лежит в пределах n = 1.307 - 1.324, рис. 26.

Рис. 2. (а) Дифрактограмма пленки сополимера $(D_3)_{0.5}(E_3)_{0.5}$, полученная на рентгеновском дифрактометре Rigaku Miniflex600. (б) Зависимость *n* сополимера на длине волны $\lambda = 632.8$ нм от молярной концентрации *x* эфира E_3 , измеренная на призменном устройстве связи Metricon2010M

На рис. 3 дан спектр пропускания пленки $(D_{3})_{0.5}(E_3)_{0.5}$ в ближней ИК области спектра. Видно, что сополимер не имеет интенсивных полос поглощения выше 3500 см⁻¹, что свидетельствует о его высокой оптической прозрачности в видимом и ближнем ИК диапазонах длин волн.

Рис. 3. Спектр пропускания сополимера $(D_3)_{0.5}(E_3)_{0.5}$, измеренный на ФТИРспектрометре Shimadzu FTIR-8400S

Перфторированные полимеры были использованы нами для создания различных элементов интегрально – оптических устройств [5].

Полимеры с фторсодержащими хромофорами в боковой цепи

Электрооптические (ЭО) полимеры находят широкое применение при создании высокоскоростных интегрально-оптических модуляторов и переключателей [9; 10]. Для создания таких материалов используются хромофоры, способные изменять показатель преломления под действием приложенного электрического поля. ЭО полимер может быть изготовлен либо путем внедрения молекул хромофора в пассивную матрицу, либо путем их ковалентного встраивания в боковую цепь полимерной макромолекулы. Второй подход более перспективен, поскольку препятствует агломерации хромофоров, приводящей к снижению электрооптического коэффициента r_{33} . Важное значение имеет синтез новых фторсодержащих хромофоров, которые, наряду с большим коэффициентом r_{33} , обладают высокой прозрачностью. На схеме, представленной на рис. 4, показана структура ЭО полимера РММА с фторсодержащим хромофором DO-2 в боковой цепи [10].

1088

Рис. 4. Структура электрооптического полимера РММА/DO-2 с фторсодержащим хромофором в боковой цепи

Световедущие пленки формировались методом центрифугирования из раствора РММА/DO-2 в хлорбензоле на кремниевых подложках с термически выращенным оксидным слоем. Под действием лазерного излучения видимого диапазона происходит осветление полимера РММА/DO-2, сопровождаемое изменением его показателя преломления *n* [10]. Это позволяет формировать в пленках канальные волноводы, разветвители, направленные ответвители и другие элементы интегрально-оптических устройств (рис. 5).

Рис. 5. Фотография волноводного разветвителя 1 × 2, сформированного в пленке из полимера РММА/DO-2 методом лазерного фотоосветления

Фторидные нанокристаллы с редкоземельными элементами

Фторидные нанокристаллы, легированные редкоземельными элементами (РЗЭ), могут быть синтезированы несколькими методами: из хлоридов, нитридов или трифторацетатов. Для получения наночастиц β-NaLuF₄/ Yb³⁺/Er³⁺/Ce³⁺ мы использовали термическое разложение трифторацетатов лютеция, иттербия, эрбия и церия в растворе олеиновой кислоты и октадецена в отсутствие кислорода. С использованием этой методики, при оптимизации температуры и времени синтеза можно получать нанокристаллы в размерном диапазоне 20–80 нм, имеющие кубическую (α) или гексагональную (β) фазу. На рис. 6а приведена ТЕМ фотография синтезированных наночастиц со средним диаметром 50 нм, а на рис. 6 б – дифрактограмма порошка из этих наночастиц. Сравнение с табличными данными (JCPDS 28-1192) позволяет сделать вывод, что нанокристаллы находятся в β-фазе.

Рис. 6. ТЕМ фотография синтезированных наночастиц β -NaLuF₄/Yb³⁺/Er³⁺/Ce³⁺ (a) и их дифрактограмма, полученная на рентгеновском дифрактометре Rigaku Miniflex 600 (6)

На рис. 7 дан спектр фотолюминесценции (ФЛ) наночастиц β NaLuF₄/ Yb³⁺/Er³⁺/Ce³⁺ в даун-конверсии при накачке светом с $\lambda = 977$ нм. Видно, что нанонаночастицы имеют интенсивную полосу ФЛ с центром вблизи 1532 нм, обусловленную переходами ⁴I_{13/2} \rightarrow ⁴I_{15/2} в ионах Er³⁺. Ширина спектра по полувысоте составляет 73 нм, что позволяет усиливать оптические сигналы во всем С-диапазоне длин волн 1530–1565 нм.

Рис. 7. Спектр ФЛ наночастиц β -NaLuF₄/Yb³⁺/ Er³⁺/Ce³⁺ в телекоммуникационном C-диапазоне спектра при накачке излучением диодного лазера с длиной волны 977 нм

Путем внедрения нанокристаллов β -NaLuF₄/Yb³⁺/Er³⁺/Ce³⁺ в фоторезист SU-8 нами были изготовлены волноводные усилители длиной от 10 до 15 мм. Коэффициент усиления измерялся на длине волны $\lambda = 1535$ нм при накачке излучения диодного лазера с $\lambda = 975$ нм (рис. 8). Достигнуто усиление Gain = 1.67 при мощности накачки 85 мВт.

Рис. 8. (а) SEM фотография волновода на кремниевой подложке. Ширина жилы 8 мкм, высота 4 мкм. (б) Схема измерения усиления. 1 – волноводы на подложке, 2 – оптический спектроанализатор. (в) Коэффициент усиления на длине волны 1535 нм в зависимости от мощности накачки P_{pump} . На вставке приведен спектр сигнала на входе (1) и на выходе (2) усилителя при накачке излучением 975 нм мощностью 85 мВт

Фторидные пленки, обладающие сверхнизким показателем преломления

Аморфные перфторполимеры имеют очень низкий показатель преломления $n \approx 1.29 - 1.34$ [1-5]. Это обусловлено как их химическим составом (фторирование уменьшает показатель преломления материалов), так и тем обстоятельством, что такие полимеры обладают развитой системой пор с размером 2 – 7 А. Поскольку для обеспечения волноводного режима распространения света по волноводу необходимо использовать подложки с еще более низкими значениями *n*, важное значение имеет поиск оптически прозрачных материалов, показатель преломления которых меньше 1.29. Одним из возможных путей решения данной задачи является использование подложек с нанесенными на них пленками из простых и сложных фторидов. Методом электронно-лучевого испарения нами были изготовлены образцы таких пленок на кварцевых подложках. На рис. 9 приведены спектры отражения луча He-Ne лазера от пленки SrF₂/SiO₂, измеренные на призменном устройстве связи Metricon2010M. Найденные параметры пленок приведены в таблице.

Рис. 9. Угловые спектры отражения $R(\theta)$ луча He-Ne лазера ($\lambda = 632.8$ нм) от пленки SrF₂/SiO₂, измеренные с использованием призменного устройства связи Metricon2010M в случае TE (а) и TM (б) поляризации. Кружки – эксперимент, линии – расчет

Параметры пленки SrF, на кварцевой подложке, найденные путем численного моделирования. $n_{\rm f}$ – показатель преломления, $H_{\rm f}$ – толщина пленки, $H_{\rm i}$ – толщина зазора между измерительной призмой и образцом, $D_{\rm abs}$ – параметр, характеризующий «невязку» между измеренным и рассчитанным коэффициентом отражения R для TE и TM поляризации зондирующего лазерного луча с λ = 632.8 нм.

Поляризация	\mathbf{R}' n_{f}	<i>Н</i> _f , мкм	<i>H</i> ₁ , мкм	$D_{\rm abs}$
TE	1.2644	1764,0	78.7	1.19
TM	1.2480	1792.5	63.8	1.86

Из таблицы следует, что пленка SrF₂, имеет толщину $H_f \approx 1.8$ мкм, низкий показатель преломления *n* и является анизотропной. В плоскости подложки $n_f = 1,2644$, а направлении, перпендикулярном этой плоскости, $n_f = 1,2480$. По-видимому, низкие значения *n* в пленках SrF₂ обусловлены наличием в них большого числа мелких пор. Пленки с таким низким *n*, могут быть использованы в качестве подложек для формирования интегральнооптических волноводов из аморфных перфторированных полимеров, показатель преломления которых лежит в пределах $n_{ron} = 1.29 - 1.31$.

Заключение

1088

Методом сверхвысокого давления синтезированы аморфные перфторированные сополимеры из различных диоксолов и эфиров. Полимеры имеют высокую оптическую прозрачность в видимом и ближнем ИК диапазонах спектра и низкий показатель преломления *n* = 1.307 – 1.324. Они способны к пленкообразованию и могут быть использованы для изготовления интегрально-оптических волноводов. Созданы новые (не описанные ранее) электрооптические полимеры с фторсодержащими хромофорами в боковой цепи. Методом лазерного фотоосветления в пленках сформированы канальные оптические волноводы и разветвители. Синтезированы нанокристаллы β-NaLuF /Yb³⁺/Er³⁺/Ce³⁺ и изготовлены компактные волноводные усилители для «телекоммуникационного» С-диапазона длин волн. Достигнут коэффициент усиления 1.67 на длине волны $\lambda = 1535$ нм в волноводе длиной 12 мм при накачке излучением диодного лазера с $\lambda = 975$ нм мощностью 85 мВт. Изготовлены пленки из простых и сложных фторидов на кварцевых подложках. Пленки имеют низкий показатель преломления n = 1.248 - 1.264 и могут быть использованы для формирования на них оптических волноводов из аморфных перфторированных полимеров.

Благодарности

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Госзадания ФНИЦ «Кристаллография и фотоника» РАН в части создания фторидных нанокристаллов и пленок, грантов РФФИ №№ 16-29-05407 и 17-07-01478 в части синтеза перфторированных сополимеров и электрооптических хромофоров.

Литература:

- Tanio, N. What is the most transparent polymer? / N. Tanio, Y. Koike // Polymer Journal. – 2000. – V.32 – № 1. – P. 43–50.
- Groh, W. What is the lowest refractive index of an organic polymer? / W. Groh, A. Zimmermann. // Macromolecules. – 1991. – V. 24. – P. 6660–6663.
- 3 Eldada, L. Advances in polymer integrated optics / L. Eldada, L.W. Shacklette // IEEE Journal of selected topics in quantum electronics. – 2000. – V. 6. – № 1. – P. 54–68.
- Zhou, M. Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication / M. Zhou // Opt. Eng. – 2002. – V. 41. – № 7. – P. 1631–1643.
- 5. Соколов, В.И. Разработка элементной базы высокоскоростных интегрально-оптических устройств на основе новых полимерных материалов /

В.И. Соколов, А.С. Ахманов, С.М. Игумнов, С.И. Молчанова, А.Г. Савельев, А.А. Тютюнов, Е.В. Хайдуков, К.В. Хайдуков, В.Я. Панченко // Вестник РФФИ. – 2014. – № 3 (83). – С. 82.

KALIEHOBS

- Zharov, A.A. Kinetics and mechanism of thermal polymerization of hexafluoropropylene under high pressures / A.A. Zharov, I.A. Guzyaeva // Russian chemical bulletin. – 2010. – T. 59. – C. 1225.
- Polunin, E. V. Homo- and co-polymerisation of perfluoroisopropylvinyl ether under high pressure / E.V. Polunin, S.I. Molchanova, Yu.E. Pogodina, V.I. Sokolov, I.V. Zavarzin // Fluorine Notes. 2017. – V. 114. – P. 5–6.
- Sokolov, V.I. New copolymers of perfl uoro-2-ethyl-2-methyl-1,3-dioxole and perfl uorovinyl ether with low non-monotonic refractive index / V.I. Sokolov, I.O. Goriachuk, I.V. Zavarzin, S.I. Molchanova, Yu. E. Pogodina, E. V. Polunin, A. A. Yarosch // Russian Chemical Bulletin. – 2019. – V. 68. – № 3. – P. 559–564.
- Dalton, L. Theory-Guided Design of Organic Electro-Optic Materials and Devices / L. Dalton, S. Benight // Polymers. – 2011. – V. 3. – P. 1325.
- Sokolov, VI. Laser formation of light guides in electro optical polymers with fluorine containing chromophores in a side chain / V.I. Sokolov, A.S. Ahmanov, I.M. Asharchuk, I.O. Goriachuk, I.V. Zavarzin, J.E. Pogodina, E.V. Polunin // Fhiorine Notes. – 2018. – V. 121. – P. 5–6.