УДК 535.37

lextler

Г.Е. Рачковская, Г.Б. Захаревич, Е.В. Вилейшикова (Минск, Беларусь) С.Е. Кичанов (Дубна, Россия)

АП-КОНВЕРСИОННО ЛЮМИНЕСЦИРУЮЩАЯ СТЕКЛОКЕРАМИКА С НАНОКРИСТАЛЛАМИ $PbF_2:(Eu^{3+},Yb^{3+},Tm^{3+})$

Синтезирована и исследована прозрачная оксифторидная стеклокерамика, содержащая нанокристаллы PbF₂: (Eu³⁺, Yb²⁺, Tm³⁺). Ап-конверсионная люминесценция наблюдалась при возбуждении в иолосу поглощения иона иттербия Yb³⁺. Структура кристаллических наночастиц в стеклокерамике изучена методом малоуглового рассеяния нейтронов.

Ключевые слова: оксифторидное стекло, люминесцирующая нано-стеклокерамика, ап-конверсия, ионы-активаторы, структура.

The transparent oxyfluoride glass-ceramics containing PbF_2 : (Eu^{3+} , Yb^{3+} , Tm^{3+}) nanocrystals was synthesized and investigated. Up-conversion luminescence was observed upon excitation into the absorption band of the ion Yb^{3+} . The structure of crystalline nanoparticles in glass ceramics was studied by small-angle neutron scattering.

123

Keywords: oxyfluoride glass, luminescence nanoglass-ceramics, up-conversion, activator ions, structure.

Оптические стекломатериалы, активированные ионами редкоземельных элементов (РЗЭ), широко применяются в различных областях науки и техники, в частности, в качестве активных сред ап-конверсионных лазеров, оптических усилителей для волоконных телекоммуникационных систем, ломинофоров, сенсоров, источников «белого» света и др. [1; 2]. -38°

Создание прозрачных люминесцирующих стеклокерамик, в которых формируется нанокристаллическая фаза, содержащая редкоземельные ионы, является в настоящее время наиболее простым и дешевым способом получения материалов с низкофононным спектром. Основой для получения таких стеклокерамик служат оксифторидные стеклянные матрины, соактивированные ионами редкоземельных элементов (RE³⁺).

В данной работе использовано сочетание трех ионов-активаторов: европия ${\rm Eu}^{3+}$, иттербия Yb³⁺ и тулия Tm³⁺, которыми активированы оксифторидные свинцово-силикатные стекла системы SiO₂–PbO–PbF₂–CdF₂. Синтез стеклянной матрицы осуществлялся в электрической силитовой печи, в корундовом тигле емкостью 0,25 мл при 950 ± 50°C с выдержкой при максимальной температуре в течение 30 мин. Готовая стекломасса вырабатывалась в металлическую форму с изготовлением образцов стекла, которые затем подвергались отжигу для снятия остаточных напряжений. Отжиг производился в муфельной печи в течение 3 ч при температуре 320–350°C с последующим инерционным охлаждением. Результаты синтеза позволили заключить, что стекла, соактивированные указанными редкоземельными ионами, характеризуются высокой прозрачностью, гомогенностью и устойчивостью стеклообразного состояния.

Формирование нанокристаллической структуры в объеме стеклянной матрицы осуществлялось путем направленной кристаллизации исходного стекла. Разработан технологический режим кристаллизации стекла, при котором в результате термической обработки получена наноструктурированная прозрачная стеклокерамика. Температура термической обработки стекла, согласно данным дифференциальной сканирующей калориметрии (температура стеклования T_g), составляет 400°С при длительности прогревания 45 ч. В результате термической обработки в стекле формируются наноразмерные кристаллы дифторида свинца PbF₂, в кристаллическую решетку которых входят ионы редкоземельных элементов. Причем, как правило, катализаторами кристаллизации выступают ионы-активаторы RE³⁺. Рентгенофазовый анализ подтверждает выделение нанокристаллов

РbF₂. На рисунке 1 представлена рентгенограмма прозрачной стеклокерамики с нанокристаллами PbF₂, содержащими три редкоземельных иона, а также показаны кристаллорафические рефлексы номинально чистого «объемного» кристалла β -PbF₂ с параметром решетки a = 5.940 Å (пространственная группа Fm3m). Дифракционные пики для стеклокерамики смещены относительно данных рефлексов, что указывает на искажение структуры кристалла, вызванное вхождением редкоземельных ионов в кристаллическую решетку β -PbF₂.

Ап-конверсионная люминесценция (АКЛ) в исследуемой прозрачной стеклокерамике наблюдалась при возбуждении в полосу поглощения (длина волны 960 нм) иона иттербия Yb³⁺ (²F_{7/2} \rightarrow ²F_{5/2}). Схемы механизмов ап-конверсионной люминесценции показаны на рисунке 2. Ап-конверсионное преобразование в исследуемых образцах осуществляется за счет кооперативного переноса энергии от пары возбужденных ионов иттербия Yb³⁺ –Yb³⁺ в виртуальном состоянии с энергией 2*E*(²F_{5/2}) к одному иону Eu³⁺, который возбуждается в состояние ⁵D₁ или ⁵D₂ (на рисунке отмечено *). В результате быстрой безызлучательной релаксации заселяется метастабильное состояние ⁵D₀ иона Eu³⁺, излучательные переходы из которого в более низколежащие состояния ⁷F_j (J = 0–4) ответственны за характерное красное свечение ионов Eu³⁺.

соактивированном ионами Еи³⁺, Yb³⁺, Tm³⁻

Механизм возбуждения ап-конверсионной люминесценции ионов Tm³⁺ реализуется через последовательную сенсибилизацию и поглощение из возбужденного состояния. Последовательная сенсибилизация заключается в последовательном переносе энергии от иона-донора Yb³⁺ к иону-акцептору Tm³⁺, в результате чего ион Tm³⁺ возбуждается в состояние ${}^{3}H_{5}$, а затем в состояния ${}^{3}F_{3}$, ${}^{1}G_{4}$ и ${}^{1}D_{2}$. При этом на каждом этапе последовательного возбуждения происходит колебательная релаксация в более низкоэнергетические состояния (³H₄, ³F₄). Ап-конверсионная люминесценция ионов Тта покрывает синий диапазон видимой области спектра и возбуждается гораздо эффективнее красной АКЛ ионов Eu³⁺. Рисунок 3 демонстрирует спектры ап-конверсионной люминесценции оксифторидного стекла и нанофазной стеклокерамики, возбуждаемых на длине волны ~960 нм в полосу поглощения ионов Yb³⁺. Анализируя представленные спектры можно заключить, что люминесценция ионов Eu³⁺ наблюдается в этих образцах в виде полос в области 589 нм, 613 нм и 695 нм, соответствующих переходам из возбужденного метастабильного (долгоживущего) состояния ${}^{5}D_{0}$ в состояния ${}^{7}F_{1}$: $({}^{5}D_{0} \rightarrow {}^{7}F_{1})$, $({}^{5}D_{0} \rightarrow {}^{7}F_{2})$ и $({}^{5}D_{0} \rightarrow {}^{7}F_{4})$. Люминесценция ионов Tm^{3+} проявляется в виде интенсивной полосы в синей области спектра(474 нм) и полос сравнительно слабой интенсивности в красной (650 нм) и ближней ИК (~800 нм) областях спектра, которые соответствуют переходам иона $Tm^{3+-1}G_4 \rightarrow {}^{3}H_6, {}^{3}F_2 + {}^{3}F_3 \rightarrow {}^{3}H_4$ и ${}^{3}H_{4} \rightarrow {}^{3}H_{c}$. По отношению к АКЛ ионов Eu ${}^{3+}$ люминесценция ионов Tm ${}^{3+}$ оказывается доминирующей.

KAUGHIOBS

Рис. 3. Спектры АКЛ оксифторидного стекла (1) и нанофазной стеклокерамики (2), соактивированных ионами Eu³⁺, Yb³⁺, Tm³

Структура стеклокерамики исследована методом малоуглового рассеяния нейтронов (МУРН). На риснке 4 приведены кривые МУРН для исходного стекла (1), стекла с ионами РЗЭ (2) и стеклокерамики, термообработанной при 400°С в течение 5 ч (3) и 15 ч (4).

и стеклокерамики (3, 4)

Отличительной особенностью всех спектров МУРН является наличие широкого пика в диапазоне малых значений переданных импульсов $q \sim 0.04$ Å⁻¹. Этот широкий пик присутствует даже на спектре исходного стекла, что может указывать на наличие в стекле флуктуаций плотности. По отношению к АКЛ ионов Eu³⁺ люминесценция ионов Tm³⁺ оказывается доминирующей, причем эта тенденция сохраняется по мере выделения в

стеклокерамике нанокристаллической фазы PbF_2 [3]. При термообработке 400° С в течение 5 и 15 ч наблюдалось появление и смещение широкого пика в область низких q < 0,01. По-видимому, рассеяние нейтронов в этом случае происходит от люминесцирующих наночастиц фторида свинца и их кластеров.

1083

Рассчитаны средние размеры люминесцентных наночастиц и флуктуаций плотности в стекле и стеклокерамике. Полученные структурные параметры приведены в таблице.

Стекла и условия термообработки	R флуктуации плотности, нм	R наночастиц, нм
Стекло исходное	3,3 (7)	_
Стекло с ионами РЗЭ	3,4 (5)	32,4 (4)
Стеклокерамика 400°С/5ч	3,2 (2)	24,6 (3)
Стеклокерамика 400°С/15ч	3,5 (8)	19,5 (3)

Структурные параметры люминесцентных наночастиц и флуктуаций плотности в исследуемых стеклах и стеклокерамике

Исследования показали, что в процессе термической обработки исходного стекла происходит кристаллизация наночастиц фторида свинца из концентрационных неоднородностей стекловидной матрицы. Именно кристаллические наночастицы фторида свинца являются хост-системами для редкоземельных элементов, что и обеспечивает формирование условий для ап-конверсионной люминесценции. Видимая ап-конверсионная люминесс ценция редкоземельных ионов формируется за счет кооперативного переноса энергии от пары возбужденных ионов иттербия Yb^{3+} к одному иону Eu^{3+} , $2Yb^{3+} \rightarrow Eu^{3+}$ и процессов последовательной сенсибилизации от иона-донора Yb^{3+} к иону-акцептору Tm^{3+} в парах $Yb^{3+} \rightarrow Tm^{3+}$.

Литература

- Желтая ап-конверсионная люминесценция прозрачной стеклокерамики с ионами эрбия / Г.Е. Рачковская [и др.] // Стекло и керамика. – 2014. – № 28. – С. 6–9.
- 2. Er³⁺ and Eu³⁺ containing transparent glass ceramics in the system PbGeO₃ –PbF₂– CdF₂ / L. Bueno [et al] // J. Non–Cryst. Solid. – 1999. – Vol. 247. – P. 87–91.
- Kichanov S.E., Kozlenko D.P., Gorshkova Yu.E., G.E. Rachkovskaya, G.B. Zakharevich, B.N. Savenko «Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses», Journal of Nanoparticle Research, 20, 54 (2018) https://doi.org/10.1007/s11051-018-4156-z