Г.В. Кулак, Г.В. Крох, Т.В. Николаенко WIELLOB3 (Мозырь, Беларусь)

АКУСТООПТИЧЕСКАЯ ДИАГНОСТИКА УЛЬТРАЗВУКОВЫХ ВОЛН ГУЛЯЕВА-БЛЮСТЕЙНА БЕССЕЛЕВЫМИ СВЕТОВЫМИ ПУЧКАМИ В КРИСТАЛЛАХ АРСЕНИДА ГАЛЛИЯ

Для акустооптической системы: воздух – GaAs – AlGaAs показано, что для бесселевого светового пучка нулевого порядка низкий коэффициент отражения R₁ испытывает волна, дифрагированная в минус первый порядок, что объясняется незначительным отличием показателей преломления слоя и подложки. Наиболее существенные изменения коэффициента отражения R₀ волны нулевого порядка достигаются при малой толщине слоя h. При увеличении толщины модулированного слоя от 0,1–0,4 мм величина коэффициента пропускания \dot{Q}_1 увеличивается на 65%

Ключевые слова: плоскопараллельный слой, волны Гуляева-Блюстейна, акустооптическая дифракция, кубический кристалл, коэффициенты отражения и пропускания.

For acousto-optic system: air-GaAs-AlGaAs, it is shown that for a zero- order Bessel light beam, a wave diffracted to a minus first order suffers a low reflection coefficient R_1 , which is explained by a slight difference in the refrective indices of the layer and substrate. The most significant changes in the reflection coefficient R_0 of zero-order wave are achieved with a small layer thickness h. With increasing thickness of the modulated layer from 0,1-0,4 mm, the value of the transmittance O_1 increases by 65%.

Keyworlds: plan-parallel slab, Gulyaev-Blustein's waves, acousto-optical diffraction, cubic crystal, coefficients of reflection and transmission.

Поверхностные ультразвуковые (УЗ) волны Гуляева-Блюстейна (ГБ) привлекают значительный интерес исследователей в связи с проблемой создания акустоэлектронных и акустооптических устройств [1; 2]. Они могут возбуждаться в пьезоэлектрических кристаллах некоторых срезов и имеют поляризацию, параллельную свободной поверхности слоя. В работе [3] исследовано акустооптическое (АО) взаимодействие волноводных оптических мод *TE* и *TM* поляризации на волнах ГБ. Отмечена возможность диагностики таких волн при брэгговской дифракции света на ультразвуке в условиях пропускания. Однако при этом не учтено френелевское отражение света от границ звукопровода. В настоящей работе исследована анизотропная брэгговская дифракция БСП нулевого порядка на ПАВ ГБ,

обусловленная акустоиндуцированной анизотропией кристалла, в условиях френелевского отражения от границ модулированного слоя.

Плоскопараллельный слой толщиной h, диэлектрическая проницаемостью которого ε_2 , расположен между однородными прозрачными средами с диэлектрическими проницаемостями ε_1 и ε_3 (рис. 1). Начало системы координат XYZ расположено на верхней границе слоя, а ось У перпендикулярна границе слоя.

380

Рис. 1. Схема АО диагностики волн Гуляева-Блюстейна в условиях анизотропной АО дифракции в слое

Кубические кристаллы арсенида галлия GaAs, широко используемые в акустоэлектронике и оптоэлектронике [4], относятся к классу симметрии $\bar{4}3m$. Будем считать, что пьезоактивная ПАВ распространяется вдоль оси [110] в плоскости ($\bar{1}10$). При этом в волне ГБ присутствуют два компонента тензора деформаций U_5 и U_6 ; им соответствуют компоненты напряженности пьезоэлектрического поля ультразвуковой волны E_3 и E_2 . Для световой волны *s*-поляризации, падающей на поверхность кристалла, существенны компоненты тензора деформации U_6 и напряженности пьезоэлектрического поля E_5 , которые определяются соотношениями [2]:

$$U_6 = A_1 K [\alpha_1 \exp(-\alpha_1 Ky) + a_{21} \alpha_2 \exp(-\alpha_2 Ky)] \exp[i(Kz - \Omega t)],$$
(1)
$$E_2 = -A_1 K [b_{11} \alpha_1 \exp(-\alpha_1 Ky) + a_{22} b_{22} \alpha_2 \exp(-\alpha_2 Ky)] \exp[i(Kz - \Omega t)].$$

тде $a_{21} = -1,4758\cdot10^1$, $b_{11} = 1,8512\cdot10^{11}$, $b_{22} = 1,6436\cdot10^9$, $\alpha_1 = 0,9912$, $\alpha_2 = 3,3879\cdot10^{-4}$, A_1 – постоянная величина, $\Omega \in K$ – круговая частота и волновое число УЗ волны.

УЗ волна (1) индуцирует решетку диэлектрической проницаемости периодическую в пространстве и во времени (вдоль оси Z) и пространственно – неоднородную вдоль оси Y:

$$\varepsilon_2(y,z,t) = \varepsilon_2 + \Delta \varepsilon_2(y) \exp[i(Kz - \Omega t)], \qquad (2)$$

611082

где $\Delta \varepsilon_2(y) = -\varepsilon_2^2 [p_{s\phi} U_6(y) + r_{s\phi} E_2(y)], p_{s\phi}(r_{s\phi}) - эффективная фотоупру$ гая (электрооптическая) постоянная кристалла.

Допустим, что падающая плоская световая волна с частотой $\omega >> \Omega$ и волновым вектором $\vec{k_1} = \vec{e}_y k_{1y} + \vec{e}_z k_{1z}$ ($k_{1y} = kn_1 \cos \varphi_1$, $k_{1z} = kn_1 \sin \varphi_1$, $k = \omega/c$, $n_1 = \sqrt{\epsilon_1}$, c – скорость света в вакууме), имеет линейную *s*-поляризацию; угол преломления φ_2 близок к углу Брэгга $\varphi_2 \approx \varphi_A$.

Решение волнового уравнения для дифрагированного поля электромагнитной волны в слое можно записать в виде [5]:

$$E = \sum_{m=-\infty}^{+\infty} A_m(x) j_0(q_m \rho_m) \exp[i(k_{mz} z - \omega_m t - \pi m/2), \qquad (3)$$

где

 $k_{mz} = k_{0z} + mK$, $\omega_m = \omega + m\Omega$; $j_0(q_m c_m) = J_0(q_m c_m)/\sqrt{pR_B}J_1(q_m R_B)$, причем $q_0 = k_0\gamma$, $q_m = k_{1m}\gamma$ (m \neq 0); ρ_m – радиальная координата БСП; R_B – радиус падающего бесселевого светового пучка, 2γ – угол конусности БСП; $J_{0,1}(x)$ – функции Бесселя нулевого и первого порядка [6].

При $k_{0z} \approx \hat{E}/2$ из совокупности дифрагированных волн (3) следует выделить лишь две наиболее существенные, то есть дифракционные порядки с m = 0 и m = -1. Система неоднородных уравнений связанных волн для комплексных амплитуд A_0 и A_0 имеет вид

$$\frac{d^2 A_0}{dy^2} + k_{0x}^2 A_0 - ik_2^2 g_{1m} \eta A_{-1} = 0, \\ \frac{d^2 A_{-1}}{dy^2} + k_{-1x}^2 A_{-1} + ik_2^2 g_{0m} \eta A_0 = 0, \quad (4)$$

где $k_{0x} = \sqrt{k_2^2 - k_{0z}^2}$, $k_{-lx} = \sqrt{k_2^2 - k_{-lz}^2}$, $k_{0z} = k_2 \sin \varphi_B$, $k_{-lz} \approx k_2 \sin \varphi_B$; $\eta(y) = -n_2^2 \Big[p_{s\phi} U_6(y) + r_{s\phi} E_2(y) \Big]$. Интегралы перекрытия дифрагированных волн находим из соотношений

$$g_{0m} = \frac{\int_{0}^{R_{B}} j_{0}(q_{m}\rho_{1})j_{0}(q_{0}\rho_{0})\rho_{0}d\rho_{0}}{\int_{0}^{R_{B}} j_{0}^{2}(q_{0}\rho_{0})\rho_{0}d\rho_{0}}, g_{1m} = \frac{\int_{0}^{R_{B}} j_{0}(q_{m}\rho_{1})j_{0}(q_{0}\rho_{0})\rho_{1}d\rho_{1}}{\int_{0}^{R_{B}} j_{0}^{2}(q_{m}\rho_{0})\rho_{1}d\rho_{1}}$$

Решение системы уравнений связанных волн в брэгговском режиме дифракции можно найти в замкнутой форме [5]. При условии малости фотоупругих постоянных и при наличии затухания УЗ волны в подложке AO взаимодействием в ней можно пренебречь. Тогда, применив стандартные граничные условия на плоскостях y = 0 и y = h, получим систему алгебраических уравнений относительно амплитудных коэффициентов пропускания t_0, t_{-1} и отражения r_0, r_{-1} для волн нулевого и первого порядков. Данная система уравнений может быть решена только численными методами. Пренебрегая медленным изменением линейных членов, зависящих от *y*, по сравнению с экспоненциальными, получим систему линейных алгебраических уравнений, решение которой представимо в замкнутой форме.

Глубина проникновения волны ГБ \bar{h} в подложку значительно больше глубины проникновения ПАВ Рэлея [1; 2]. Для рассматриваемого направления распространения ПАВ в кристалле GaAs при частоте ультразвука $f = 1 \Gamma \Gamma u$ глубина проникновения волны ГБ составляет $\bar{h} \approx 2,5 \, m$. Для системы воздух – GaAs – AlGaAs толщина возмущенного слоя из кристалла GaAs, $h \leq \bar{h}$ [1; 2]. При малых фотоупругих и электрооптических постоянных и при наличии затухания ультразвука в подложке АО взаимодействием в подложке можно пренебречь. Коэффициенты отражения и пропускания дифрагированных волн определяются по формулам:

$$t_{0} = \frac{-n_{1}n_{2}\left[\left(e^{-ik_{a}} + e^{-ik_{b}}\right) + r_{12}r_{23}\left(e^{ik_{a}} + e^{ik_{b}}\right)\right]e^{-ik_{3}h}}{Z} \quad \vec{r}_{0} = \frac{-\left(e^{-ik_{b}} + r_{12}r_{23}e^{ik_{b}}\right)}{\left(e^{-ik_{b}} + r_{12}r_{23}e^{ik_{b}}\right)}, \quad (5)$$

$$t_{-1} = \frac{2n_{1}n_{2}\left[\left(e^{-ik_{a}} + e^{-ik_{b}}\right) + r_{12}r_{23}\left(e^{ik_{a}} - e^{ik_{b}}\right)\right]e^{-ik_{3}h}}{Z}, \quad r_{-1} = \frac{4in_{1}n_{2}\left(n_{2} - n_{3}\right)\sin\left(k_{a} - k_{b}\right)}{\left(n_{1} + n_{2}\right)Z}, \quad (5)$$

где

$$\begin{split} r_{12} &= (n_1 \cos \varphi_1 - n_2 \cos_2) / (n_1 \cos_1 + n_2 \cos \varphi_2), \\ r_{23} &= (n_2 \cos \varphi_2 - n_3 \cos \varphi_3) / (n_2 \cos \varphi_2 + n_3 \cos \varphi_3), k_3 = k n_3; n_3 = \sqrt{\varepsilon_3}; \\ k_{a,b} &= k_2 h \sqrt{(1 \mp \eta_a \mp \eta_s) - K^2 / 4k_2^2}; \eta_a = n_2^2 p_{s\phi} U_6(0) / 2, \eta_s = n_2^2 r_{s\phi} E_2(0) / 2), \\ Z &= (r_{12} r_{23} e^{ik_a} + e^{-ik_a}) (e^{-ik_b} + r_{12} r_{23} e^{ik_b}). \end{split}$$

При выводе выражений (5) предполагалось, что угол Брэгга $\Phi_{\hat{A}}$ – мал [2;5]. Данноеусловие выполняется причастотеультразвука/ \leq 1ГГ ц. В дальнейшем будем считать, что $E_2(0) = [(b_{11}\alpha_1 + a_{21}b_{22}\alpha_2)/(\alpha_1 + a_{21}\alpha_2)]U, U = U_6(0)$. Для численных расчетов использовались энергетические коэффициенты пропускания (\hat{O}_0, \hat{O}_1) и отражения (R_0, R_1), которые определены по формулам:

$$R_{0s} = |\mathbf{r}_0|^2, R_{1s} = |\mathbf{r}_{-1}|^2, T_{0s} = \frac{n_3}{n_1} |t_0|^2, T_{1s} = \frac{n_3}{n_1} |t_{-1}|^2.$$
(6)

Численные расчеты проведены для многослойной системы: воздух – GaAs – AlGaAs [4]. Показано, что волна Гуляева-Блюстейна частотой

 $f = \Omega/2\pi = 1$ ГГц концентрируется в слое GaAs. При расчетах использована длина световой волны в вакууме $\lambda_0 = 1,15$ мкм, амплитуда тензора деформаций $U = \sqrt{2I_a/\rho v^3}$, где I_a – интенсивность УЗ волны; $p_{a\phi} = p_{44} (r_{a\phi} = r_{41}) - эффективная фотоупругая (электрооптическая) постоянная.$

11083

На рис. 2 представлены зависимости коэффициентов отражения R_0 и R_1 волн, дифрагированных в нулевой и минус первый порядки, от амплитуды деформации U и толщины слоя h. Коэффициент отражения дифрагированной волны минус первого порядка R_1 мал, что объясняется незначительным отличием показателей преломления слоя и подложки для системы: воздух – GaAs – AlGaAs. Коэффициенты отражения волн, дифрагированных в нулевой порядок (R_0) достигают ~ 0,3 при h = 0,4 мм. Наиболее существенные изменения R_0 наблюдаются при малой толщине слоя: $h \le 0,2$ мм. При этом на графике зависимости $R_0(U)$ имеется минимум. Данные особенности дифракции объясняются френелевским отражением и степенью неоднородности пространственного распределения упругих деформаций и пьезоэлектрических полей в многослойной системе. Рассмотренные особенности коэффициента отражения R_0 могут быть использованы для диагностики ультразвуковых волн ГБ в слоистых пьезоэлектрических материалах.

Рис. 2. Зависимость энергетического коэффициента отражения волны, дифрагированной в нулевой и первый порядки, при различной толщине модулированного слоя h (a $-R_0$; 6 $-R_1$; 1 - h = 0.1 мм; 2 - h = 0.2 мм; 3 - h = 0.3 мм; 4 - h = 0.4 мм; воздух – GaAs – AlGaAs, f = 1 ГГц, $\lambda_0 = 1,15$ мкм, $g_{0m} \approx g_{1m} \approx 1$)

Зависимости коэффициентов пропускания T_0 и T_1 волн, дифрагированных в нулевой и минус первый порядки, от амплитуды деформации U и толщины слоя h представлены на рис. 3. На рисунке видно, что при $U = 10^{-4}$ и увеличении толщины слоя h от 0,1 мм до 0,4 мм величина коэффициента пропускания T_1 увеличивается на 65%. При малых $U \le 10^{-5}$ коэффициент пропускания T_0 при h = 0,4 мм является наименьшим. Это объясняется тем. что, кроме дифракционных максимумов, соответствующих прошедшим

волнам, формируются также и дифракционные максимумы в отраженном свете.

Рис. 3. Зависимость энергетического коэффициента пропускания дифрагированной волны нулевого T_0 и первого T_1 порядка для различных толщин модулированного слоя h ($a - T_0$; $b - T_1$; 1 - h = 0,1 мм; 2 - h = 0,2 мм; 3 - h = 0,3 мм; 4 - h = 0,4 мм; воздух – GaAs – AlGaAs, f = 1 ГГп, $\lambda_0 = 1,15$ мкм, $g_{0m} \approx g_{1m} \approx 1$)

Преимущество предложенного нами метода АО диагностики, перед традиционными, заключается в использовании как прошедших, так и отраженных дифрагированных волн. Полученные результаты найдут применение для АО диагностики волн ГБ в различных средах, в том числе в системе воздух – GaAs – AlGaAs.

Литература:

STORT

- Дьельсан, Э. Упругие волны в твердых телах. Применение для обработки сигналов / Э. Дьельсан, Д. Руайе. – М. : Наука, 1982. – 424 с.
- Яковкин, И.Б. Дифракция света на акустических поверхностных волнах / И.Б. Яковкин, Д.В. Петров. – Новосибирск : Наука, Сибирское отделение, 1979. – 184 с.
- Bright, VM. Acousto-optic interactions between optical waves and Bleustein-Gulyev surface acoustic waves in gallium arsenide and other piezoelectric cubic crystals / V.M. Bright, W.D. Hunt. // J. Appl. Phys. – 1990. – Vol. 67, № 2. – P. 654–662.
- Акустические кристаллы. Справочник. / А.А. Блистанов, В.С. Бондаренко, В.В. Чкалова [и др.]; под ред. М.П. Шаскольской. – М.: Наука, 1986. – 629 с.
- Кулак, Г.В. Дифракция света на ультразвуке в условиях френелевского отражения / Г.В. Кулак // Опт. и спектр. – 1994. – Т. 76, № 6. – С. 1027–1029.
- Белый, В.Н. Поляризационно-независимая акустооптическая модуляция бесселевых световых пучков / В.Н. Белый, Г.В. Кулак, Г.В. Крох, О.В. Шакин // Журн. прикл. спектр. – 2014. – Т.81, № 1. – С. 83–88.