09

When to Ba Резонансное отражение света тонким слоем плотной нелинейной среды

© Е.В. Тимощенко, В.А. Юревич, Ю.В. Юревич

Могилевский государственный университет продовольствия, 212027 Могилев, Белоруссия e-mail: va yurevich@mail.ru

(Поступило в Редакцию 8 апреля 2012 г.)

Аналитически определена возможность гистерезиеного поведения спектральных кривых резонансного отражения в условиях диполь-дипольного взаимодействия и спектрального смещения поля. Фазовое смещение действующего поля связано с изменением энергетического состояния плотной резонанской среды, образующей тонкий граничный слой. Задача рассмотрена для параметров квантоворазмерных структур на основе используемых в оптике полупроводников.

Исследование оптических свойств размерно-ограниченных планарных структур, в частности тонких полупроводниковых пленок, позволяет решать задачи поиска перспективных элементов для эффективного управления лазерным излучением. Нелинейная связь между полем электромагнитной волны, проходящей через тонкую пленку материала, образованного резонансными атомами, и поляризованностью среды способна привести к ряду интересных физических эффектов [1,2]. С недавнего времени активно изучаются плотные резонансные среды — материалы с высокой концентрацией активных центров (атомов, молекул, ионов, экситонов и т.д.). В этих средах оказываются значительными нелинейные фазовые эффекты, связанные с ближними дипольдипольными взаимодсйствиями, которыс могут, напримср, проявиться во внутренней оптической бистабильности или неустойчивости, приводящей к развитию автоколебаний в прошедшем излучении. К числу объектов, гдс возможно наблюдение таких явлений, относят, в частности, тонкие пленки плотных сред на основе полупроводниковых наноструктур, образованных квантовыми точками [3]. В этом случае также считают важным то, что элементы наноструктур обладают большими дипольными моментами, связанными с экситонными переходами: их величина составляет не менее $1 \cdot 10^{-28}$ Cl · m [4]. В результате компоновки десяти и более страт возможно образование из наноструктурных элементов субмикронной планарной пленки с выраженным нелинейным откликом на поле резонансного излучения [5]. Характерность реакции подобных объектов состоит в том, что при резонансном воздействии свста в отраженных (прошедших) пучках должен присутствовать дополнительный к френелевскому отражению (преломлению) компонент, который обусловлен резонансной поверхностной поляризованностью [6]. При относительно больших величинах дипольных моментов значительно различается поляризусмость активных частиц в основном и возбужденном состояниях — существенной оказывается квазирезонансная составляющая поляризованности. Соответственно с изменением концентрации активных частиц

должна изменяться поляризованность среды. Тогда для частот действующего поля, соответствующих области оптического резонанса, наблюдается нелинейная рефракция, заметным следствием которой в полупроводниках является спектральное смещение (уширение) действующего поля [7]. Изучение особенностей резонансного отражения в условиях фазовых эффектов, вызванных диполь-дипольным взаимодействием и квазирезонансной поляризуемостью, несомненно, должно представлять интерсс. В работе, результаты которой положены в основу настоящего сообщения, ставилась задача показать эффективность обоих факторов фазового смещения в определении особенностей дисперсионной зависимости нелинейного отражения света тонким слоем плотной резонансной среды.

При формулировке модели предполагалось, что подобным граничным слоем разделены оптические среды с линейными диэлектрическими проницаемостями ε_1 и єз. Расстояние между резонансными частицами в тонком слое предполагается достаточно большим во избежание перекрытия их электронных орбиталей --тогда можно сохранить традиционное описание взаимодействия атомарных диполей в квантоворазмерной структуре [3]. Нормально падающее на граничный слой поле с амплитудой Е_i предполагаем плосковолновым и квазистационарным. Взаимодействие вещества границы с полем лазерного излучения (с несущей частотой $\omega = 2\pi c/\lambda$) описывается аналогично, например [8], модифицированной системой уравнений Максвелла-Блоха (Maxwell-Bloch) для квазистационарных комплексных амплитуд проходящей (E) и отраженной волн (E_r) и вероятностных переменных резонансного отклика среды (отнесенных к одному атому — поляризованности ρ и разности заселенности *n* уровней экситонного перехода):

$$E = \frac{2\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}} E_i(t) - \frac{\omega N l}{(\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}) c} \left[\frac{\mu}{\varepsilon_0} \rho + i 2\pi \Delta \alpha (n_0 - n) E' \right],$$

$$\dot{\rho} + \frac{1}{T_2} (1 + i\Delta) \rho = \frac{\mu}{\hbar} nE',$$

$$\dot{n} + \frac{1}{T_1} (n - n_0) = -\frac{\mu}{2\hbar} (\rho^* E' + \rho E'). \qquad (1)$$

$$E' = \frac{1}{1 - 2\pi \Delta \alpha N (n_0 - \Delta n)/3} \left(E + i \frac{\mu N}{3\epsilon_0} \rho \right).$$

$$E_r = E - E_i, \qquad \Delta = (\omega - \omega_0) T_2.$$

Здесь *µ* — средний дипольный момент активных частиц, N — их объемная плотность, n₀ — начальное значение разности населенности, Δ — нормированная отстройка частоты зондирующего поля относительно центра ω_0 резонансной спектральной линии поглощения, T_1 и T_2 времена продольной и поперечной релаксаций (соответствующие времени межзонной релаксации и однородной ширине линии, обратной T₂), *l* — толщина слоя (в применяемой схеме расчета толщина *l*, естественно, значительно меньше длины волны λ). Уравнения связи полей в (1) аналогично [6] записаны на основе используемых при решении уравнений Максвелла условий для полей E, Er и Ei на границе раздела сред. Включение в уравнения связи переменной поляризованности означаст учет компоненты нелинейного отклика вещества граничного слоя, связанной с сверхизлучением ансамбля активных частиц, образующих его среду. Выражение для поляризованности содержит составляющую, которой обычно учитывается квазирезонансный компонент поляризуемости, существенный при наличии возбуждаемых внешним полем частоты ω переходов, близких к резонаненому. При этом оказывается значимым параметр $\Delta \alpha$ разность поляризуемостей в основном и возбужденном состояниях атома. Его величиной определен параметр рефракционной нелинейности, следствия которой наблюдаются и измеряются в структурах из используемых в оптике полупроводников [5], оцениваясь при этом как "гигантские". Изменение рефракции пропорционально резонансной вариации населенностей $n_0 - n(t)$, которая при действии лазерных полей испытывает насыщение. Выше подчеркнуто, что в плотных резонансных средах оказывается значимым эффект, обусловленный ближними диполь-дипольными взаимодействиями. В связи с этим система уравнений (1) формулирустся с учетом влияния локальных полей, создаваемых дипольными атомами - действующее на атомы слоя световое поле E'(t) содержит поправку Лоренца, которая рассчитана в приближении среднего поля и включает резонансные составляющие.

Отличительной закономерностью отклика особо тонкого слоя на воздействие резонансного излучения, обычно рассматриваемой в рамках подобных моделей, является оптическая бистабильность. Ее анализируют для стационарной задачи, когда интенсивность излучения, зондирующего граничный слой, изменяется крайне медленно по сравнению с временами релаксации двухуровневой системы и поэтому се можно считать непрерывной во времени. Это означает, что при данном значении амплитуды приложенного поля $E_i(t) = E_0$ в среде слоя устанавливается равновесис, характеризуемос определенными значениями материальных переменных. Интенсивности приложенного (Y) и прошедшего (X) полсй удобно нормировать по мощности поля, насыщающего поглошение: $Y = \mu^2 T_1 T_2 E_0^2 / \hbar^2$, $X = \mu^2 T_1 T_2 |E_S|^2 / \hbar^2$, здесь E_S — равновесная амплитуда прошедшего в слой поля. В рамках использованных представлений (рассматривая стационарное приближение системы (1)) связь безразмерных интенсивностей прошедшего поля X и действующего в среде поля X' с интенсивностью приложенного поля Y можно выразить следующими соотношениями:

$$\frac{4\eta Y}{(1+\eta)^2} = X' \left[1 - \gamma G(\Delta - \beta X') + \frac{G}{1+\eta} \right]^2 + G^2 X' \left(\frac{\Delta - \beta X'}{1+\eta} + \gamma \right)^2, X = X' [1 - \gamma G(\Delta - \beta X')]^2 + (G\gamma)^2 X', G = \frac{\kappa}{1+\Delta^2 + X'}, \qquad \kappa = \frac{\mu^2 \omega_0 N I}{\varepsilon_0 c \hbar} T_2.$$
(2)

Здесь $\beta = 2\pi\Delta\alpha\varepsilon_0\hbar/\mu^2T_2$ — параметр резонансной нелинейности рефракции, $\gamma = c/3\omega(1+\eta)l$ — нормированный коэффициент в локальной лоренцевской поправке, κ — ненасыщенный показатель поглощения, G — насыщенное поглощение с учетом форм-фактора линии, $\eta = \sqrt{\varepsilon_2/\varepsilon_1}$ — относительный коэффициент преломления.

Физически соотношения (2) можно рассматривать как систему уравнений, описывающую нелинейные и дисперсионные свойства слоя оптической среды в приближении среднего поля для условий, при которых поглощение и положение его резонанса на шкале частот особым образом зависят от интенсивности проходящего поля. В определении резонансного поглощения особое значение имеет дисперсионная компонента, описывающая фазовую модуляцию излучения, которая означает "затягивание" его несущей частоты к смещенному центру линии. Из соотношений (2) можно непосредственно выразить пропускательную способность тонкого активного слоя X(Y), а также сго эффективное отраженис R(Y) в зависимости от интенсивности, основываясь на выражении (здесь $r = (\eta - 1)/(\eta + 1)$ — френелевская величина отражательной способности):

$$R =$$

$$\frac{\{r+G[1/(\eta+1)-r\gamma(\Delta-\beta X')]\}^2+G^2[(\Delta-\beta X')/(\eta+1)+r\gamma]^2}{\{1+G[1/(\eta+1)-\gamma(\Delta-\beta X')]\}^2+G^2[(\Delta-\beta X')/(\eta+1)+\gamma]^2}.$$
(3)

Закономерности хода указанных зависимостей удобно оценить, используя параметрический расчет, т.е. полагая одну из переменных величин (X') линейным, неотрицательным, непрерывно нарастающим параметром. Приведенные на рис. 1,2 результаты вычислений получены

Рис. 1. Зависимость резонансного отражения от уровня нормированной интенсивности приложенного поля (на фрагменте *a* штрихами указаны направления гистерезисных скачков): $\kappa = 2.0$, $\beta = 0.1$, $\Delta = 0.1$ (*I*), 0.5 (*2*), 1.0 (*3*), 2.0 (*4*) (*a*); $\kappa = 1.7$, $\beta = 0$ (*I*), 0.05 (*2*), 0.08 (*3*), 0.10 (*4*), $\Delta = 0.5$ (*b*); $\gamma = 0.15$, $\lambda = 1.25 \cdot 10^{-6}$ m, $\eta = 3.6$, $T_1 = 1 \cdot 10^{-9}$ s, $T_2 = 1 \cdot 10^{-12}$ s.

с использованием таких значений модельных коэффициентов, которые соответствовали, в основном, диапазону значений параметров квантоворазмерных структур в системах InAs/(Al)GaAs. Судя по зависимостям на рис. 1, величины коэффициснта отражения, обусловленного также резонансной поляризованностью в поверхностном слос, могут быть значительно выше френелевского значения r^2 , однако по мере насыщения поглощения в слое снижаются, приближаясь именно к френелевской величине. В определенной области значений У, где фазовые вклады ближнего дипольного взаимодействия и фактора спектрального уширения линии сравнимы, нелинейной характеристике отражения при показателе поглощения выше порогового значения (к ~ 1.5) свойственна бистабильность. Тогда при циклическом изменении интенсивности внешнего сигнала стационарный

Журнал технической физики, 2013, том 83, вып. 2

отклик структуры должен демонстрировать гистерезис. Расстояние между точками поворота характерных кривых, где возможны гистерезисные изменения отражения, зависят от величины частотной отстройки (рис. 1, a) и параметра нелинейной рефракции (рис. 1, b).

На основе соотношений (2), (3) определяется форма резонансных кривых зависимости отражения $R(\Delta)$ при фиксированном по всей частотной шкале уровне возбуждения Y. Первое из выражений (2) в таком случае следует решать как нелинейное алгебраическое уравнение относительно X'. Определяя X' на основе его решения и рассчитывая R по формуле (3) при нарастающих значениях отстройки Δ , можно построить дисперсионную кривую $R(\Delta, Y)$. Тем самым выясняется

Рис. 2. Форма спектральных кривых резонансного отражения в зависимости от нормированной интенсивности приложенного поля: $\kappa = 2.0$ (a), 2.4 (b), $\beta = 0.05$, $\gamma = 0.14$, $\lambda = 1.25 \cdot 10^{-6}$ m, $\eta = 3.6$, $T_1 = 1 \cdot 10^{-9}$ s, $T_2 = 1 \cdot 10^{-12}$ s.

ход зависимости отражательной способности слоя от частоты при условии, что спектральная ширина сигнала с однородной интенсивностью У значительно выше спектральной ширины линии резонансного поглощения. Рис. 2 иллюстрируст характерные результаты вычисления нормированных спектральных кривых $R(\Delta, y)$ для различного уровня насыщения поглощения. При невысоком насыщении спектральные кривые представляют типичные для однородного уширения резонансные линии, практически симметричные по отношению к центральной частоте, смещенной, однако, вследствие ближнего дипольного взаимодействия. На обоих фрагментах рис. 2 такой ход зависимости представлен передними линиями (для случая Y = 1). Частотный сдвиг из-за диполь-дипольного взаимодсйствия компенсируется нелинейным смещением, результирующее смещение центральной частоты снижается по мере роста насыщения поглощения. Это заметно по ходу кривых, соответствующих значениям падающей интенсивности, близким к той области, гдс проявляется бистабильность нелинейных характеристик отражения (назовем эту область интенсивности критической). Здесь с увеличением интенсивности прежде всего развивается асимметрия кривых, обусловленная встречным действием факторов затягивания частоты к центру линии и нелинейного спектрального уширения линии. При увеличении уровня возбуждения деформация кривых, обусловленная вкладом фазовых эффектов, выражается в образовании провала (локального минимума) в центре линии, соответ ствующему снижению значения отражения в этой спектральной области. На участке, примыкающем к области этого минимума, резонансные кривые при критических значениях интенсивности способны приобрести изгиб, характерный для бистабильности (который затем исчезаст с ростом степени насыщения). Бистабильная зависимость $R(\Delta, Y)$, таким образом, оказывается возможной и на шкале частот. В частотной полосе бистабильности при перестройке частоты интенсивного сигнала должны происходить резкие с гистерезисным свойством скачки эффективного отражения светового поля нелинейным слоем. Сравнение хода зависимостей на фрагментах а и b рис. 2 указывает, что величина скачка больше у пленок с более высоким показателем ненасыщенного поглощения к. Значения критической интенсивности при этом выше, однако более широким оказывается се диапазон, поэтому в отражательной способности резонансных пленок с относительно более высоким поглощением, очевидно, легче обнаружить гистерезиеные свойства.

Взаимодействие более тонких эффектов нелинейноети, сопровождающих резонансное поглощение в тонких слоях на основе сред с высокой плотностью активных частиц, приводит к заметному изменению физических условий, в которых должны проявляться бистабильность и оптический гистерезис. Приведенные в настоящей работе результаты оценки возможности гистерезисного хода нелинейной и дисперсионной зависимостей резонансного отражения света могут быть полезны при разработке нелинейных отражателей, активных покрытий и безынерционных частотных фильтров в пассивных устройствах управления потоками когерентного излучения.

Исследования проведены в рамках выполнения задания Фотоника 2.2.08, включенного в Государственную программу научных исследований Республики Беларусь по направлению "Фотоника и электроника".

Список литературы

- [1] Хаджи П.И., Коровай А.В. // Квант. электрон. 2002. Т. 32. № 8. С. 711.
- Htoon H., Shih C.K., Takagahara T. // Chaos, Solit. Fract. 2003.
 Vol. 16. N 3, P. 439.
- [3] Каплан А.Е., Волков С.Н. // УФН. 2009. Т. 179. Вып. 5. С. 539.
- [4] Panzarini G., Hohenester U., Molinari E. // Phys. Rev. B. 2002.
 Vol. 65. N 16. P. 165 322.
- [5] Khomchenko A.V. Waveguide spectroscopy of thin films. N.Y.: Academic Press, 2005. 220 c.
- [6] Гадомский О.Н., Власов Р.А. Оптическая эхо-спектроскопия поверхности. Минск: Навука і тэхніка, 1990. 246 с.
- [7] Garmire E. // IEEE Journ. Scl. Top. Quant. Electron. 2000. Vol. 6. N 6. P. 1094.
- [8] Юревич В.А. // ЖПС. 1999. Т. 66. № 5. С. 661.