УДК 539.144

ОЦЕНКА ПАРАМЕТРОВ ГИПЕРЯДЕР В ПРОСТЫХ МОДЕЛЯХ

С. М. Чернов

кандидат физико-математических наук, доцент МГУ имени А. А. Кулешова

Kyriellogg Проведен качественный анализ Л-гиперядер в рамках двухчастичной модели при нулевом радиусе действия ЛЛ-сил. Оценено значение объемного интеграла ЛЛ-потенциала, энергии связи гиперядер, размеры нуклонного остова и длины Ар-рассеяния.

Ключевые слова: Гиперядра, основное и возбужденные состояния, энергия связи, размеры ядер, длина рассеяния и эффективный радиус.

Введение

Гиперядра – связанные состояния барионов, из которых, по крайней мере, один является гипероном со странностью, отличной от нуля. В настоящей работе будут рассмотрены лишь гиперядра, в состав которых входит единственный Л-гиперон.

Л-гиперядра были открыты польскими физиками М. Данышем и Е. Пниевским в 1952 г. За последние 60 лет в гиперядерной физике достигнут значительный прогресс: экспериментально идентифицировано около 30 гиперядер, для которых удалось измерить энергии связи гиперядер (энергии отделения Л-гиперона B_{λ}) с достаточно хорошей точностью, а также дать теоретическую интерпретацию свойств ЛЛ-потенциалов и описать структуру многих гиперядер. Состояние физики гиперядер систематически освещается в журнале "Успехи физических наук" [1], а также в работах [2–3]. В исследованиях физики гиперядер удалось решить целый комплекс важнейших вопросов физики ядра и элементарных частиц. Назовем лишь некоторые из них, которые будут затронуты в настоящей работе.

1) Построение моделей строения гиперядер, в рамках которых можно оценить параметры 'ЛЛ-потенциала.

Оценка энергии связи открытых гиперядер.

3) Рассмотрение вопроса о размерах нуклонного остова в гиперядрах, включая ядра, для которых отсутствуют данные для свободного состояния.

 Проведение сравнительного анализа результатов, полученных на основе расчетов связанных состояний, с данными по низкоэнергетическому Ар-рассеянию.

Разумеется, что описанный круг проблем решался по-разному во многих работах [1-3]. При этом, как правило, проводились громоздкие аналитические и численные расчеты с большой затратой машинного времени, и которые, кроме автора, не могут быть воспроизведены. В настоящей работе показано, что

© Чернов С. М., 2016

mert

многие указанные вопросы могут быть качественно решены в рамках достаточно простых моделей, доступных студенту университета.

1. Выбор модели гиперядра и основные предположения

При анализе энергий связи гиперядер в первом приближении ограничимся рассмотрением центрального и спиново независимого ΛN -потенциала $V_{\Lambda N}(r)$. В дальнейшем расчет энергий связи гиперядер будем проводить в модели Λ +недеформированный нуклонный остов. При этом нуклонный остов рассматривается как сплошная среда, в которой ядерная материя распределена в пространстве с плотностью $\rho(r)$, где $\rho(r)$ – усредненная по углам плотность распределения нуклонов остова.

В рамках этой модели нахождение энергий связи гиперядер сводится к решению уравнения Шредингера для Л-частицы, движущейся в поле ядра – остова

$$V_{\Lambda O}(r) = \int V_{\Lambda N}(|\vec{r} - \vec{r}_1|)\rho(r_1)d^3r_1.$$
(1)

В случае гиперядер интеграл (1) допускает существенное упрощение, которое для дальнейшего будет иметь принципиальное значение. Можно показать, что выражение (1) можно представить в виде [4]:

$$V_{\Lambda O}(r) = -\Omega_{\Lambda N} \sum_{m=0}^{\infty} \frac{\left\langle R_{\Lambda N}^{2m} \right\rangle}{(2m+1)!} \nabla^{2m} \rho(r), \qquad (2)$$

где введены обозначения:

Mekt

$$\Omega_{\Lambda N} = -\int V_{\Lambda N}(r) d^3 r; \quad \left\langle R_{\Lambda N}^{2m} \right\rangle = -\frac{1}{\Omega_{\Lambda N}} \int V_{\Lambda N}(r) r^{2m} d^3 r. \tag{3}$$

В дальнейшем ограничимся первыми двумя членами последнего разложения:

$$V_{\Lambda O}(r) \approx -\Omega_{\Lambda N} \left(1 + \frac{R_{\Lambda N}^2}{6} \nabla^2 \right) \rho(r) \,. \tag{4}$$

Здесь объемный интеграл $\Omega_{\Lambda N}$ и среднеквадратичный радиус $R_{\Lambda N} = \sqrt{\langle R_{\Lambda N}^2 \rangle}$ являются интегральными характеристиками ΛN -потенциала и не зависят от структуры ядра-остова.

Это приближение оправдано двумя причинами. Во-первых, оценка более высоких поправок, например $\langle R_{\Lambda N}^4 \rangle$, ограничена точностью измерений энергий связи гиперядер. Во-вторых, разложение (2) фактически ведется по малому параметру δ , равному отношению радиуса действия ΛN -сил (: 0,5 ΦM) к размерам ядра-остова (: 4 ΦM), т. е. δ : 0,1.

Зная экспериментальные значения B_{Λ} двух гиперядер и параметры нуклонной плотности их остовов, можно определить величины $\Omega_{\Lambda N}$ и $R_{\Lambda N}$. Для этой FIGHIOBS

цели были выбраны гиперядра ${}^{5}_{\Lambda}He$ и ${}^{13}_{\Lambda}C$, для которых надежно установлены как энергии связи В,, так и плотности распределения нуклонов остова. Кроме того, ядра ⁴*He* и ${}^{12}C$ наименее подвержены деформациям [2] и имеют нулевые спины, вследствие чего ни спиновые, ни тензорные компоненты *ЛN*-потенциала не могли бы давать вклада в В_^.

2. Оценка параметров ЛЛ потенциала в однородной модели

Предполагая тождественность распределения протонов и нейтронов в ядрах, плотность распределения ядерной материи в ядре с массовым числом А будем описывать функцией $ho(r) = A
ho_0(r)$, где $ho_0(r)$ нормирована на 1 нуклон:

$$\int \rho_0(r) d^3r = 4\pi \int_0^\infty \rho_0(r) r^2 dr = 1.$$
 (5)

NUL61110BS

Как следует из опытов по рассеянию быстрых электронов на ядрах [5], данные экспериментов не очень чувствительны к выбору формы функции $\rho_0(r)$, а определяются, главным образом, среднеквадратичным радиусом ядра $\left\langle R^2 \right\rangle^{1/2}$

 $\left(\left\langle R^2\right\rangle = \int \rho_0(r) r^2 d^3 r\right)$ или эквивалентным радиусом $R_0 = \sqrt{5/3} \left\langle R^2\right\rangle^{1/2}$, равным радиусу шара, в котором нуклоны равномерно распределены по объему с плотностью $\rho = \frac{3A}{4\pi R_0^3}$ (однородная модель). Экспериментальные значения $\langle R^2 \rangle^{1/2}$ и, следовательно, R_0 ядер-остовов соответствующих гиперядер указа-

ны в таблице 1 [5].

Таблица 1 – Результаты численных расчетов параметров основного состояния гиперядер в однородной модели (экспериментальные значения $B^{
m эксп.}_{\Lambda}$, $R_{
m 0}$ и μ взяты из а [2] и (Эпектроннный Эпектроннный работ [2] и [5])

Гиперядро	В ^{эксв} , МэВ	В ^{теор} , МэВ	$\langle \mathbf{R}^2 \rangle^{1/2}, \Phi_M$	R ₀ , Фм	R _g , Фм	μ, МэВ
⁵ _A He	3,12	4,32	1,6753	2,1628	2,299	858,666
⁶ _A He	4,18				2,537	900,460
⁷ _A Li	5,58	2,13	2,5432	3,2833	2,670	930,375
⁷ _A Be	5,16				2,739	952,968
⁸ _A He	7,16				2,753	953,209
⁸ Li	6,80	4,20	2,4173	3,1207	2,787	952,960
⁸ Be	6,84				2,783	952,968

				Оконча	ние та	аблицы 1
Гиперядро	В ^{эксп} , МэВ	В ^{теор} , МэВ	$\left< \mathbf{R}^2 \right>^{1/2}, \Phi_{\mathbf{M}}$	R ₀ , Фм	R ₂ , Фм	µ, МэВ
⁹ Li	8,50	6,75	2,3270	3,0041	2,836	970,727
⁹ _A Be	6,71				3,009	970,447
⁹ ∕ _∆ ₿	8,29				2,854	970,743
¹⁰ Be	9,11	6,33	2,5180	3,2507	2,962	984,773
¹¹ B	10,24	8,99	2,4277	3,1341	3,028	996,455
¹² B	11,37	11,07	2,4060	3,1061	3,084	1006,189
¹² C	10,76			1	3,130	1006,204
¹³ C	11,69	11.69	2,4702	3,1890	3,189	1014,406
14C	12,17	13,54	2,4614	3,1777	3,273	1021,563
¹⁵ N	13,59	13,30	2,5582	3,3026	3,283	1027,754
16 O	12,50				3,467	1033,178
28.Si	16,60				4,098	1068,257
32 S	17,50		1	0.0	4,264	1074,142
	18,70	20,21	3,4595	4,4662	4,574	1082,406
⁵¹ V	19,90			11	3,788	1089,028
⁸⁹ Y	22,00	27,84	4,2449	5,4801	4,952	1100,682
139 La	23,80	30,51	4,8464	6,2567	5,963	1106,074
²⁰⁸ Λ P b	26,50	32,23	5,4943	7,0931	6,874	1109,323

Окончание таблицы 1

Так как радиус действия Л*N*-сил меньше области действия *NN*-потенциала, по крайней мере, вдвое [1], то для упрощения задачи положим $R_{\Lambda N} = 0$. В этом случае ЛN-потенциал будет описываться единственным параметром – объемным интегралом $\Omega_{\Lambda N}$, а потенциал взаимодействия Λ -гиперона с нуклонным остовом в однородной модели примет вид прямоугольной ямы ширины R_0 и

глубины
$$V_0 = \frac{3A\Omega_{\Lambda N}}{4\pi R_0^3}$$
:
 $V(r) = \begin{cases} -V_0, & 0 \le r \le R_0 \\ 0, & r > R_0 \end{cases}$
(6)

Тогда динамика движения Λ -частицы в гиперядре для *s*-состояния (l = 0) будет описываться радиальным уравнением Шредингера:

$$\frac{d^2 f(r)}{dr^2} - \frac{2\mu}{\hbar^2} \left(B_{\Lambda} + V(r) \right) f(r) = 0, \qquad (7)$$

где μ – приведенная масса Λ -остова, f(r) = rR(r). Функция f(r) удовлетворяет граничным условиям $f(0) = f(\infty) = 0$. Решая поставленную краевую задачу,

Suektbo

и сшивая решения на границе внутренней и внешней областей при $r = R_0$, получим дисперсионное уравнение, связывающее параметры задачи [6]:

$$\beta \cdot ctg \beta R_0 + \gamma = 0, \qquad (8)$$

ALIGH1083

где введены обозначения:

$$\beta^2 = \frac{2\mu}{\hbar^2} (V_0 - B_\Lambda); \qquad \gamma^2 = \frac{2\mu B_\Lambda}{\hbar^2}. \tag{9}$$

Решая численно уравнение (8) для любого гиперядра, можно оценить значение объемного интеграла $\Omega_{\Lambda N}$ в предположении $R_{\Lambda N} = 0$. В частности, для гиперядра ${}^{13}_{\Lambda}C(A = 12, B_{\Lambda} = 11, 69 M \ni B, R_0 = 3, 189 \Phi_M, \mu = 1014, 406 M \ni B)$ получаем – $\Omega_{\Lambda N} = 253,24 M_{2}B \cdot \Phi_{M}^{3}$. В случае использования в качестве опорного гиперядра ${}^{5}_{\Lambda}He$, получается близкое значение $\Omega_{\Lambda N} = 230, 22 M \mathfrak{B} \cdot \Phi_{M}^{3}$. Таким образом, в дальнейшем будем использовать следующие параметры ЛN-потенциала:

$$\Omega_{\Lambda N} = 253,24 \, M_{\Im} B \cdot \Phi_{\mathcal{M}}^3, \ R_{\Lambda N} = 0.$$
⁽¹⁰⁾

3. Оценка энергий связи и размеров нуклонных остовов гиперядер в однородной модели

Для количественного определения указанных параметров обратимся к основному уравнению (8), в котором по известным параметрам $(\Omega_{\Lambda N}, A, \mu, R_0)$ определяется $B_{\Lambda}^{meop.}$, а также радиусы ядра-остова R_{g} для заданных значений $B_{\Lambda}^{\text{эксп.}}$. Результаты численных расчетов приведены в таблице 1 и для иллюстрации изображены на рисунках 1 и 2. В таблице 1 свободные ячейки соответствуют ядрам, для которых отсутствуют экспериментальные данные о их размерах [5].

Рис. 1. Зависимость энергии связи гиперядер В, (МэВ) от массового числа остова. (Эксперимент - сплошная линия, теория - пунктирная линия)

Разумеется, в данной простейшей модели не следует ожидать удовлетворительного согласия теоретических оценок и экспериментальных данных по энергиям связи всех гиперядер B_{Λ} , а также размерам нуклонных остовов R_{Λ} , кроме области вблизи опорного гиперядра ${}^{13}_{\Lambda}C$. В частности, если считать плотность бесконечной ядерной материи равной [5] $\rho_0 = 0,17 \, нуклон / \Phi_M^3$, то энергия насыщения гиперядер $(A \rightarrow \infty)$ должна составлять величину порядка $D_{\Lambda} = \Omega_{\Lambda N} \cdot \rho_0 \approx 43 M \Rightarrow B$, что примерно на 10 М $\Rightarrow B$ превышает ожидаемый результат [1-3]. Из таблицы 1, например, видно, что указанное завышение энергии связи гиперядра ²⁰⁸_л Pb составляет 5,7 МэВ (20%), однако, точность в определении R₀ составляет всего 3,5%. Этот результат можно объяснить, оценив зависимость вариации энергии связи гиперядра B_{Λ} от изменения радиуса ядраостова R₀. Для количественного анализа этой зависимости удобно ввести *пара*метр дисперсии: $D = dB_{\Lambda}/dR_{0}$, который можно оценить, применив процедуру численного дифференцирования неявно заданной функции из уравнения (8) [7]. При этом параметр дисперсии практически совпадает для различных гиперядер, например,

$$D\begin{pmatrix} {}^{13}C \\ {}^{\Lambda}C \end{pmatrix} = -13,4 M \vartheta B/\Phi_{\mathcal{M}}; \qquad D\begin{pmatrix} {}^{208}Pb \\ {}^{\Lambda}Pb \end{pmatrix} = -11,4 M \vartheta B/\Phi_{\mathcal{M}}.$$

Таким образом, изменение энергии связи ΔB_{Λ} на 1 *МэВ* позволяет оценивать R_0 по указанной схеме с точностью $\Delta R_0 \approx 0, 1 \Phi_M$.

Очевидно, с ростом массового числа A, в соответствии с условием (6), увеличивается как глубина, так и ширина ямы для потенциала $V_{\Lambda O}$, так что в яме может находится несколько дискретных уровней энергии, соответствующих возбужденным *ns* состояниям гиперядер [8]. Определение таких состояний и величину их энергий можно также оценить из основного уравнения (8), сменив на-

Shekt

71

чальные условия поиска соответствующих параметров. Результаты проведен-Kynemoss ных численных расчетов для основного (1s) и возбужденных состояний (ns)приведены в таблице 2.

Гиперало	$B_{\Lambda}(1s),$	$B^{\star}_{\Lambda}(2s),$	$\mathbf{B}^{\star\star}_{\Lambda}(\mathbf{3s}),$	
типеридро	МэВ	МэВ	МэВ	
	20,21	3,27		
⁸⁹ X	27,84	14,18	2	
¹³⁹ La	30,51	20,03	3,85	
²⁰⁸ Pb	32,23	23,81	10,29	

Таблица 2 – Энергии возбужденных состояний гиперядер

Следует указать на возможность ошибочной интерпретации этих возбужденных состояний (l = 0), как состояния Λ -гиперона с не нулевыми орбитальными моментами $(l \neq 0)$.

4. Низкоэнергетическое Ар-рассеяние

В низкоэнергетической области сечение рассеяния ядерных частиц обычно рассматривается в приближении эффективного радиуса путем введения длины рассеяния а и эффективного радиуса r [1], которые связаны с потенциалом $V_{AA}(r)$ условием [9]:

$$a = \frac{2\mu}{\hbar^2} \int_{0}^{R_0} V_{\Lambda N}(r) r^2 dr = -\frac{\mu}{2\pi\hbar^2} \Omega_{\Lambda N}; \qquad (11)$$

$$r_{\rm s} = \frac{4\hbar^2}{3\mu} \cdot \frac{R_{\Lambda N}^2}{\Omega_{\Lambda N}} \cdot \tag{12}$$

Подставляя численные значения параметров Ар-потенциала (10) и приведенной массы $\mu_{\Lambda p} = 509,65 M_{2}B$, получим:

$$a = -0.53 \ \Phi_{\mathcal{M}}; \ r_{a} = 0.$$
 (13)

Полученная оценка (13), в целом, согласуется с экспериментальными результатами [10], не смотря на большой разброс опытных данных [1]. Как и ожидалось, отрицательное значение длины рассеяния говорит об отсутствии связанного ЛИ-состояния в полном согласии с экспериментом.

Заключение

Простейшей задачей в квантовой механике является задача о движении частицы в прямоугольной яме. Эта задача может служить как предельный случай реалистических потенциалов, способной описывать некоторые общие характеристики квантовых систем. Естественно ожидать, что применение простой методики решения задачи о частицы в яме может быть полезной при каче-

next

ственном описании свойств гиперядер в двухчастичной модели, микроскопический анализ которых, как правило, требует проведения достаточно громоздких теоретических и численных расчетов в рамках нетривиальных, а иногда и спорных моделей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. **Хрылин, Б.** А. Гиперядра и Л*N*-взаимодействие / Б. А. Хрылин // Успехи физических наук. 1971. 105 т., вып. 2. С. 185–205.
- Калачей, С. А. Энергии связи гиперядер и взаимодействие AN и AA : дис... канд. физ-мат наук : 01.04.02 / С. А. Калачей. – Москва, 2005. – 119 л.
- 3. *Ланской, Д. Е.* Физика гиперядер / Д. Е. Ланской. Web-версия учебного пособия, 2002.
- 4. *Колесников, Н. Н.* Л*N*-потенциал из совместного анализа гиперядер и *Лр*-рассеяния / Н. Н. Колесников, С. М. Чернов // Ядерная физика. 1976. 23 т., вып. 5. С. 960–969.
- 5. Варламов, В. В. Физика ядра и банки ядерных данных / В. В. Варламов [и др.]. Москва : НИИЯФ МГУ, 2010. 245 с.
- 6. *Чернов, С. М.* Квантовая механика : курс лекций / С. М. Чернов. Могилев : МГУ им. А. А. Кулешова, 2013. – 196 с.
- Шушкевич, Г. Ч. Компьютерные технологии в математике. Система Mathcad 14 : учеб. пособие : в 2 ч. / Г. Ч. Шушкевич, С. В. Шушкевич. – Минск : Изд-во Гревцова, 2012. – Ч. 2. – 256 с.
- Богданова, Л. Н. Возбужденные состояния гиперядер / Л. Н. Богданова, В. Е. Маркушкин // Физика элементарных частиц и атомного ядра (ЭЧАЯ). – 1984. – 15 т., вып. 4. – С. 808–869.
- 9. Бабиков, В. В. Метод фазовых функций в квантовой механике / В. В. Бабиков. Москва, 1968. 224 с.
- Alexander, G. Study of the AN-System in Low-Energy Ap-Elastic Scattering / G. Alexander, U. Karshon, A. Shapira [et al.] // Phys. Rev. - 1968. - V. 173. - P. 1452-1460.

Поступила в редакцию 18.11.2015 г.

STIEKTPO

Контакты: stanislavchernof2011@yanlex.by (Чернов Станислав Михайлович)

Chernov S.M. THE ESTIMATION OF PARAMETERS OF HYPER-NUCLEI IN SIMPLE MODELS.

The qualitative analysis of Λ -hypernuclei in the framework of the two-particle model with zero- radius of Λ N-force is presented in the article. The value of the volume integral of Λ N-potential, the energy of the hypernucleus connection, the size of the nucleon frame and Λ p-scattering length are assessed.

Key words: hypernuclei, ground and excited states, binding energy, nucleus size, scattering length, effective radius.

Inernogg