ХИМИЧЕСКИЙ СОСТАВ КОРМОВ ИЗ КУКУРУЗЫ И СОИ, ВОЗДЕЛЫВАЕМЫХ ПО ИНТЕНСИВНОЙ ТЕХНОЛОГИИ В УСЛОВИЯХ МОГИЛЕВСКОЙ ОБЛАСТИ

Одной из важнейших задач в деле увеличения продуктивности животных и птицы является увеличение производства кормов и сбалансированное кормление их по питательным веществам, в первую очередь по кормовому протеину.

Самыми ценными кормами считаются концентрированные. Чем более интенсивно ведется животноводство, тем большая в них потребность. В мире кормовое зерно получают из таких главных фуражных культур: кукурузы 473 млн. тонн, ячменя – 171,8, сорго – 60,4, овса – 42,5 млн. тонн, причем во многих странах в балансе зерен фуражные культуры составляют 60-80%, а зерно продовольственных культур – 20-40%.

В Могилевской области, как и во всей Республике Беларусь, специализирующейся на производстве продуктов животноводства, одной из ведущих кормовых культур, в особенности для крупного рогатого скота, является кукуруза.

Долгие годы ее выращивали, в основном, на силос и зеленый корм, однако потребность животноводства в высокоэнергетических, концентрированных кормах в последнее десятилетие потребовала пересмотра технологии возделывания с ориентацией на получение зерна — в благоприятные по тепловому фактору года и получение початков молочно-восковой и восковой спелости зерна — в неблагоприятные. Началом возделывания кукурузы по прогрессивной (зерновой) технологии, наиболее соответствующей биологическим особенностям этой культуры, был 1988 год.

В связи с усовершенствованием технологии возделывания изменилась и технология уборки кукурузы. Если ранее кукурузу убирали на силос и зеленый корм путем измельчения всей массы, то по зерновой технологии наряду с отделением початков и вымалачиванием зерна с последующей его сушкой появилась и энергосберегающая технология уборки кукурузы, предусматривающая получение:

- зерностержневой смеси из початков с обертками (влажность 38-52%, питательность 1 кг натурального корма 0,49-0,6 корм. ед.);
- зерностержневой смеси из початков без оберток (влажность 35-50%, питательнось 1 кг корма 0,6-0,68 корм. ед.);
- консервированного влажного зерна (влажность 28-42%, питательность 1 кг корма 0,6-1,1 корм. ед).

Такая технология уборки нашла применение как на Украине, так и в Беларуси [1; 3]. В связи с этим нами начиная с 1988г. на Могилевской ГОСХОС была начата научно-исследовательская работа по разработке элементов технологии возделывания кукурузы на зерно, которая затем была продолжена с 1994 по 1996г. на агробиологической станции "Любуж" Могилевского госуниверситета им. А.А.Кулешова с определением химического состава различных компонентов урожая (початков с обертками, початков без оберток, влажного зерна и др.) В эти же годы мы анализировали данные компоненты и в различных хозяйствах области, внедряющих такую технологию, на содержание основных питательных веществ. Усредненные результаты химического состава видов кормов представлены в табл. 1. Кроме того, нами анализировались корма из кукурузы и на содержание аминокислот. Результаты анализов последних изложены в публикации [2].

Таблица 1

Химический состав кормов из кукурузы и сои, продуктов их переработки

(среднее по Могилевской области, на сухое вещество)

Наименование корма	Влаж ность, %	Проценты					110	В 100 кг корма, кг	
		азот	сырой проте- ин	сырой	сырая клетчатка	сырая зола	53 B	кормо- вых единиц	перева- римого протеина
Кукурузные початки с обертками	51,7	1,4	8,9	3	15,2	2,4	70,4	102	5,86
Кукурузные початки без оберток	50,7	1,4	9	4,2	10,2	2,1	74,4	121	5,92
Кукуруза, зерно	41,8	1,9	11,8	5,3	2,1	1,9	78,9	152	8,7
Мука из почат- ков кукурузы	14,9	1,3	8,1	3,4	10,2	2,4	75,9	109	5,64
Соя, зерно	8,1	6	37,8	17,3	8,3	5,4	31,2	134	30,6
Соевая солома	22,97	1,3	8			9,2			4,7
Соевый шрот	14,8	6,1	38,3						29,7

Анализируя результаты собственных аналитических исследований и данные других научно-исследовательских учреждений различных стран близкого и дальнего зарубежья, стало очевидным, что в различных почвенно-климатических условиях корма из кукурузы бедны кормовым протеином, причем в нем недостает таких жизненно важных незаменимых аминокислот как лизин, триптофан и др. [2; 5]. Согласно выводам многих ученых и практиков всего мира, перед скармливанием животным и птице кормов из кукурузы их необходимо балансировать по кормовому протеину, включая весь комплекс незаменимых аминокислот. При кормлении коров по рационам, не сбалансированным по протеину, расход кормов на 1 кг молока повышался на 30-35%, а себестоимость молока увеличивалась на 22-28%; при откорме свиней расход кормов на 1 кг привеса повышается на 40-45%, что увеличивает себестоимость мяса [4].

Балансирование кормов по протеину во многих странах мира, включая в первую очередь США, проводится соевыми бобами и продуктами их переработки – шротом, жмыхом. Кроме того, на кормовые цели используются соевые сено и солома. Соевые бобы обладают самым высоким содержанием кормового

протеина и растительного жира (масла). Аминокислотный состав соевого белка наиболее совершенен из всех источников растительных белков и напоминает, за некоторым исключением, состав высококачественных животных белков [1]. Благодаря этому соя занимает первое место в мире (52 млн. га) как по площади посева, так и валовому сбору зерна, явно превосходя другие однолетние зернобобовые, масличные культуры и многолетние бобовые травы.

Республика Беларусь импортирует соевые бобы и продукты их переработки из-за рубежа (США, Аргентины, Бразилии, России и др.).

В Беларуси соя до настоящего времени не получила широкого распостранения, хотя еще в конце 19 века ее широко пропагандировал агроном И.Е. Осинский для выращивания в Могилевской, Минской, Гродненской и Вилейской губерниях.

Учитывая высокую значимость сои, нами в 1994 г. на Могилевской ГОСХОС были начаты научные исследования по разработке элементов интенсивной технологии данной культуры.

Опыт многих стран мира показывает, что там, где собирают по 70-80 ц/га зерна кукурузы, можно гарантированно получать по 18-20 ц/га зерна сои. Поэтому, получая в своих опытах на 50-84 ц/га зерна кукурузы, строились прогнозы получить 12-21 ц/га зерна сои.

Следует отметить, что фермеры США считают, что благодаря высокому содержанию в зерне белковых веществ и жиров, даже при невысоких урожаях (11-15 ц/га) эту культуру экономически выгодно высевать на больших площадях.

В 1994 г. полевые опыты по возделыванию сои были продолжены на агробиологической станции "Любуж" Могилевского госуниверситета им. А.А. Кулешова с сортами сои Вилия, а в 1999 – 2000г. с сортами Ясельда и селекционным номером 37-15.

Химический состав зерна, соломы, а также продуктов переработки сои за все годы исследований представлены в табл. 1. Зоотехнический анализ кормов из кукурузы и сои проводился на Могилевской областной станции по химизации сельского хозяйства и в Могилевской районной агрохимической лаборатории.

Анализируя данные табл. 1, можно отметить, что все компоненты кукурузы (кукурузные початки с обертками, початки без оберток, зерно) богаты безазотистыми экстрактивными веществами (БЭВ), куда входят продукты углеводного обмена: сахара (глюкоза, фруктоза, сахароза, мальтоза, лактоза), крахмал, инулин, гемицеллюлоза, пектиновые вещества, а также лигнин и др. Однако они бедны кормовым протеином и его качеством.

Соя же, наоборот, богата кормовым протеином, растительным жиром (маслом) и бедна БЭВ. Эти корма дополняют друг друга по основным питательным веществам, а также незаменимым аминокислотам.

В заключение следует отметить, что показатели качества кормов из кукурузы и сои могут быть использованы зоотехнической службой при составлении кормовых рационов для животных и птицы, а также при составлении комбикормов.

ЛИТЕРАТУРА

- 1. *Бабич А.А.* Животноводство: проблема кормов. М.: Знание, 1991. 64с. (Новое в жизни, науке, технике. Сер. Сельское хозяйство, №11).
- Барсуков С.С. Амінакіслотны састаў розных відаў кармоў з кукурузы ў залежнасці ад угнаенняў і ўмоў вырошчвання // Весці АН БССР, сер.с.-г.навук. – №8. – 1991. – С. 80-82
- 3. *Надточавв Н.Ф., Барсуков С.С.* Выращивание кукурузы на силос и зерно. Мн.: Ураджай, 1994. 80с.
- Плешков Б.П. Биохимия сельскохозяйственных растений. М.: Колос, 1969. 407с.

5. Технология приготовления кормов из кукурузы / *Погорелый Л.В., Банкази Д.* и др. – М.: Агропромиздат, 1987. – 287с.

SUMMARY

These are data chemical structure of fodder made of maize and soy-beans cultivated in the Mogilev of the Republic of Belarus.