n-АРНЫЕ АНАЛОГИ ХОЛЛОВСКИХ ПОДГРУПП

Холловские n-арные подгруппы определяются [1] аналогично холловским подгруппам [2]: если π — множество простых чисел, то n-арная подгруппа < B, [] > конечной n-арной группы < A, [] > называется π -холловской, если её порядок |B| является наибольшим π -делителем порядок |A|, т.е. $|B| = |A|_{\pi}$. Если $\pi = \{p\}$, то $\{p\}$ -холловская n-арная подгруппа называется p-силовской.

Следующее определение является естественным в силу того, что все классы конгруэнции, определённой на n-арной группе, имеют одну и ту же мощность [3, предложение 10.11].

1. Определение. Порядком конгруэнции в п-арной группе называется мощность смежных классов этой конгруэнции.

Если ρ — конгруэнция n-арной группы < A, [] >, то для обозначения её порядка в n-арной группе будем использовать символ $\|\rho\|$. При этом, если $\|\rho\| < \infty$, то ρ — назовём конечной конгруэнцией. В противном случае ρ — бесконечная конгруэнция.

2. Определение. Конгруэнция ρ конечной n-арной группы < A, [] > называется π -холловской, если её порядок в < A, [] > равен $|A|_{\pi}$. В частности, если π = $\{\rho\}$, то π -холловская конгруэнция называется ρ -силовской.

Порядок конгруэнции ρ в n-арной группе < A, [] > не следует путать с её порядком |р| как подалгебры в A². Согласно следствию из [3, с.169]

$$|A| = ||\rho|| \cdot |A/\rho|$$

для конечной n-арной группы < A, [] >.

Допуская вольность речи, в случаях, когда не возникает разночтений, будем говорить и писать "порядок конгруэнции" вместо "порядок конгруэнции в n-арной группе".

Существуют примеры n-арных групп, не имеющих холловских n-арных подгрупп, но обладающих нетривиальными холловскими конгруэнциями.

Имеет место

3. Предложение. Пусть ρ и σ – конечные конгруэнции, < C, [] > – конечная n-арная подгруппа n-арной группы < A, [] >. Тогда справедливы следующие ут-

1)
$$\|\rho\sigma\| = \frac{\|\rho\| \cdot \|\sigma\|}{\|\rho\cap\sigma\|}$$
;

ядения.
1)
$$\|\rho\sigma\| = \frac{\|\rho\| \cdot \|\sigma\|}{\|\rho\cap\sigma\|}$$
;
2) $\|\rho C\| = \frac{\|\rho\| \cdot |C|}{\|\rho\cap C^2\|} = \frac{\|\rho\| \cdot |C|}{|\rho(a)\cap C|}$ для любого $a \in C$.
Если A – группа с единицей е, ρ и σ – её конгрузнции, то $(\rho\sigma)(u) = \rho(e)\sigma(e)u$

$$(\rho\sigma)(u) = \rho(e)\sigma(e)u$$

для любого $u \in A$. В частности, $(\rho\sigma)(e) = \rho(e)\sigma(e)$. Отсюда и из теоремы 1 [4] получается следующая

4. Лемма. Если < A, [] > — n-арная группа, ρ и σ её конгруэнции, a, b \in A, то

$$(\rho\sigma)(b) = \rho(a) @ \sigma(a) @ b = [\rho(a)\overline{a} \underbrace{a \dots a}_{n-3} \sigma(a)\overline{a} \underbrace{a \dots a}_{n-3} b],$$
$$(\rho\sigma)(a) = \rho(a) @ \sigma(a) = [\rho(a)\overline{a} \underbrace{a \dots a}_{n-3} \sigma(a)].$$

- 5. Лемма. Пусть о конгруэнция, < C, [] > n-арная подгруппа n-арной группы < A, [] >. Тогда < оС, @ > - подгруппа группы < A, @ >, причём σC = [σ(a) \overline{a} $\underbrace{a \dots a}_{n-3}$ C] для любого $a \in A$.
- 6. Следствие. Пусть σ конгруэнция,< C, [] > n-арная подгруппа п-арной группы < A, [] >. Тогда σ C = [σ (a) $\underbrace{C ... C}_{n-1}$] для любого a ∈ C.
- 7. Следствие. [3, лемма 9.8]. Пусть < B, [] > и < C, [] > n-арные подгруппы n-арной группы < A, [] >, причём < B, [] > полуинвариантна в < A, [] >, и пусть $ho_{_{\rm B}}$ n-арнои группы — , , , , , , , конгруэнция, определяемая < B, [] >. Тогда $\rho_{\text{B}}C = [\underbrace{B \dots B}_{n-1}C]$.

Доказ**ательство.** Если $a \in B$, то по предложению 7.4 [3], $\rho_{_{B}}(a)$ = B, откуда и из леммы 5 следует $\rho_B C = [B \bar{a} \underbrace{a \dots a}_{n-3} C]$. Так < B, [] > — n-арная подгруппа, то из $a \in B$ вытекает $a \in B$. Поэтому из последнего равенства следует доказываемое равенство. Следствие доказано.

8. Лемма. Если ρ – конгруэнция, < B, [] > – n-арная подгруппа n-арной группы < A, [] >, то < ρ B/ ρ , $\widehat{\rho}$ (a) > = < ρ B/ ρ (a), @ >, для любого a $\in \rho$ B.

Доказательство. Так как $a = \rho \cap (\rho B)^2$ – конгруэнция на ρB , то по теореме 1 [4], $< \rho B/\alpha$, $\alpha(a) > = < \rho B/\alpha(a)$, $\alpha > \alpha$ для любого $\alpha \in \rho B$, откуда, учитывая $\alpha(a) = \rho(a)$ и обозначение $\rho B/\alpha = \rho B/\rho$, получим $< \rho B/\rho$, $\alpha(a) > \alpha < \rho B/\rho$, $\alpha(a) > \alpha < \rho B/\rho$. Лемма доказана.

9. Теорема. Пусть ρ — конгруэнция, < B, [] > $-\pi$ -холловская n-арная подгруппа конечной n-арной группы < A, [] >, $a \in B$. Тогда: 1) < B $\cap \rho(a)$, @ > $-\pi$ -холловская подгруппа группы < $\rho(a)$, @ >, $a < \rho B/\rho(a)$, @ > $-\pi$ -холловская подгруппа группы < A/ $\rho(a)$, @ >; 2) < $\rho B/\rho$, [] > $-\pi$ -холловская n-арная подгруппа n-арной группы < A/ ρ , [] >.

Доказательство. 1) По теореме 1 [4], $< \rho(a)$, @>— инвариантная подгруппа группы < A, @>, а так как $a \in B$, $\tau_0 <$ B, @> также подгруппа в < A, @>, которая к тому же π -холловская. Так как $\rho(a)$ @ B = B @ $\rho(a)$, τ_0 по лемме 15.2 [2], < B $\cap \rho(a)$, @>— π -холловская подгруппа в $< \rho(a)$, @>.

По лемме 9.5 [3], $< \rho$ B, [] > - n-арная подгруппа в < A, [] >. Так как $a \in B$, то < B, @ >, как уже отмечалось, π -холловская подгруппа в < A, @ >. Кроме того, по лемме 5, ρ B = ρ (a) @ B. Снова применяя лемму 15.2 [2], заключаем, что $< \rho$ (a) @ B/ ρ (a), @ $> = < \rho$ B/ ρ (a), @ $> -\pi$ -холловская подгруппа группы < A/ ρ (a), @ $> -\pi$ -холловская подгруппа группы < A/ ρ (a), @ $> -\pi$ -холловская подгруппа группы < A/ ρ (a), @ $> -\pi$ -холловская подгруппа группы < A/ ρ (b).

2) По лемме 8,

$$<\rho B/\rho(a),$$
 $\bigcirc > = <\rho B/\rho,$ $\bigcirc (a)>,$ $\$\bigcirc > = \\$\bigcirc \\(a\\)>.\\$\$$

Поэтому из доказанного в 1) и равенств

$$|\langle \rho B/\rho, (\rho(a)) \rangle| = |\langle \rho B/\rho, [] \rangle|, |\langle A/\rho, (\rho(a)) \rangle| = |\langle A/\rho, [] \rangle|$$

вытекает, что $< \rho B/\rho$, [] $> -\pi$ -холловская п-арная подгруппа в $< A/\rho$, [] >. Теорема доказана.

10. Теорема. Пусть < В, [] > $-\pi$ -холловская, < С, [] > - полуинвариантная n-арные подгруппы конечной n-арной группы < A, [] >, причём В \cap С $\neq \emptyset$. Тогда < В \cap С, [] > $-\pi$ -холловская n-арная подгруппа в < С, [] >, а

$$< [B \underbrace{C ... C}_{n-1}]/C, [] > = < [\underbrace{B ... B}_{n-1}C]/C, [] > -$$

 π -холловская n-арная подгруппа в < A/C, [] >.

Доказа**тельство.** По предложению 7.4 [3], < C, [] > определяет в < A, [] > конгруэнцию ρ_{c} , причём $\rho_{c}(a) = C$ для любого $a \in C$. Поэтому, если $a \in B \cap C$, то по теореме 9, < B \cap C, @ > $-\pi$ -холловская подгруппа в < C, @ >, и значит < B \cap C, [] > $-\pi$ -холловская n-арная подгруппа в < C, [] >.

Согласно следствию 7, $\rho_{c}B = [B\underbrace{C \dots C}]$, откуда и из теоремы 9 следует, что $< [B\underbrace{C \dots C}]/C$, $@> -\pi$ -холловская подгруппа группы < A/C, @> для любого $a \in B \cap C$. А так как по следствию 2 [4], < [B $\underbrace{C \dots C}/C$, @> = < [B $\underbrace{C \dots C}/C$, @> = < [B $\underbrace{C \dots C}/C$, @> = < для любого $a \in C$, то из

$$|<[B\underbrace{C\dots C}_{n-1}]/C,[]>|=|<[B\underbrace{C\dots C}_{n-1}]/C,@>|$$

следует, что < [B C ... C]/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская n-арная подгруппа в < A/C, [] $> -\pi$ -холловская подгруппа в $> -\pi$ -холловская подгруппа в

11. Предложение. Пусть ρ и σ – конгруэнции конечной п-арной группы < A, [] >, причём σ – π -холловская, $a \in A$. Тогда < $\rho(a)$ $\bigcap \sigma(a)$, $@ > - \pi$ -холловская подгруппа группы < $\rho(a)$, @ >, $a < (\rho\sigma)(a)/\rho(a)$, $@ > - \pi$ -холловская подгруппа группы < A/ $\rho(a)$, @ >.

Доказательство. По теореме 1 [4], $< \rho(a)$, $@>_{H} < \sigma(a)$, $@>_{-}$ инвариантные подгруппы группы < A, @>. Поэтому

$$\rho(a)$$
 @ $\sigma(a) = \sigma(a)$ @ $\rho(a)$.

А так как $< \sigma(a)$, $@ > - \pi$ -холловская в < A, @ >, то по лемме 15.2 [2], $< \rho(a) \cap \sigma(a)$, $@ > - \pi$ -холловская подгруппа в $< \rho(a)$, @ >, а $< \rho(a)$ $@ \sigma(a) / \rho(a)$, $@ > -\pi$ -холловская подгруппа в $< A/\rho(a)$, @ >. Тогда, учитывая равенство $(\rho\sigma)(a) = \rho(a)$ $@ \sigma(a)$ из леммы 4, заключаем, что $< (\rho\sigma)(a)/\rho(a)$, $@ > - \pi$ -холловская подгруппа группы $< A/\rho(a)$, @ >. Предложение доказано.

12. Теорема. Пусть $\sigma - \pi$ -холловская конгруэнция, < C, [] > - полуинвариантная n-арная подгруппа конечной n-арной группы < A, [] >. Тогда $\sigma \cap C^2 - \pi$ -холловская конгруэнция в < C, [] >, а $< \sigma C/C, [] > -\pi$ -холловская n-арная подгруппа n-арной группы < A/C, [] >.

Доказательство. Согласно первой теореме об изоморфизмах [3, теорема 9.7], $\sigma \cap C^2$ является конгруэнцией в < C, [1] >. Кроме того, если $a \in C$, то по следствию 5.15 [3], < C, @ > — инвариантна в < A, @ >, а по теореме 1 [4], < σ (a), @ > — подгруппа в < A, @ >. Так как $|\sigma(a)| = ||\sigma||$, то < σ (a), @ > — π -холловская в < A, @ >. Применяя теперь соответствующий бинарный результат, заключаем, что < σ (a) \cap C, @ > — π -холловская подгруппа в < C, @ >. Тогда из

$$||\sigma \cap C^2|| = |(\sigma \cap C^2)(a)| = |\sigma(a) \cap C^2(a)| = |\sigma(a) \cap C|$$

следует, что $\sigma \cap C^2 - \pi$ -холловская конгруэция в < C, [] >.

По лемме 9.5 [3], $< \sigma C$, [] > - n-арная подгруппа в < A, [] >. Поэтому $< \sigma C/C$, [] > - n-арная подгруппа в < A/C, [] >. Зафиксировав а $\in C$ и применяя следствие 2[4], получим

$$< \sigma C/C, @> = < \sigma C, @>/< C, @>,$$

откуда и из леммы 5 следует

$$< \sigma C/C, @> = < \sigma(a) @ C, @>/< C, @>.$$

Применяя к правой части последнего равенства соответствующий бинарный результат, заключаем, что $< \sigma C/C$, $@ > -\pi$ -холловская подгруппа в < A/C, @ >. Тогда $< \sigma C/C$, $[] > -\pi$ -холловская n-арная подгруппа в < A/C, [] >. Теорема доказана.

Свойства E_π и C_π для n-арных групп определяются [1] также как и для групп [2]: конечная n-арная группа < A, [] > обладает свойством E_π , если она имеет по крайней мере одну π -холловскую подгруппу; конечная n-арная группа < A, [] > обладает свойством C_π , если она обладает свойством E_π и любые две её π -холловские n-арные подгруппы сопряжены в < A, [] >

Определим ещё одно свойство: конечная n-арная группа < A, [] > обладает свойством HC_{π} , если она обладает свойством E_{π} и любые две её π -холловские n-арные подгруппы полусопряжены в < A, [] >.

Полусопряжённость п-арных подгрупп определена Г.Н. Воробьёвым в [6].

13. Предложение. Пусть < A, [] > — конечная n-арная группа. Если для некоторого $a \in A$ группа < A, @ > обладает свойство C_{π} , то < A, [] > не может иметь более одной π -холловской конгруэнции.

Доказательство. Если ρ и σ – π -холловские конгруэнции конечной п-арной группы < A, [] >, то по теореме 1 [4], < ρ (a), @ > и < σ (a), @ > — инвариантные подгруппы группы < A, @ > для любого а \in A. Ясно, что обе указанные инвариантные подгруппы являются π -холловскими. А так как в < A, @ > не может быть более одной инвариантной π -холловской подгруппы, то ρ (a) = σ (a), откуда ρ = σ . Предложение доказано.

По предложению 8.1 [5], группы < A, @ > и < A $_{o}$, * > изоморфны. Поэтому группу < A, @ > в предложении 13 можно заменить соответствующей группой Поста < A $_{o}$, * >.

14. Лемма. n-Арные подгруппы < B, [] > и < C, [] > n-арной группы < A, [] > полусопряжены в ней тогда и только тогда, когда подгруппы

$$< B_a = [\underbrace{B ... B}_{n-1} a], @>_{H} <_{a} C = [a \underbrace{C ... C}_{n-1}], @>$$

сопряжены в группе < А, @ >.

15. Теорема. Если конечная n-арная группа < A, [] > обладает свойством E_{π} и имеет π -холловскую конгруэнцию, то она обладает свойством HC_{π} .

Доказательство. Пусть < B, [] > и < C, [] > $-\pi$ -холловские n-арные подгруппы в < A, [] >. Так как $|B_a| = |B|$, $|_aC| = |C|$ для любого $a \in A$, то < B_a , @ > и < $_aC$, @ > $-\pi$ -холловские подгруппы в < A, @ >. Если $\sigma - \pi$ -холловская конгруэнция в < A, [] >, то по теореме 1 [4], < σ (a), @ > - инвариантная подгруппа в < A, @ >, являющаяся к тому же π -холловской. Применяя теперь теорему Шура-Цассенхауза, получаем сопряжённость подгрупп < B_a , @ > и < $_a$ C, @ > в < A, @ >, откуда и из леммы 14 вытекает полусопряжённость n-арных подгрупп < B, [] > и < C, [] > в < A, [] >. Теорема доказана.

16. Следствие. Если n-арная группа < A, [] > обладает свойством E_π и имеет хотя бы одну π -холловскую полуинвариантную n-арную подгруппу, то она обладает свойством HC_{π^*}

При изучении подгруппового строения конечных п-арных групп значительна роль сформулированной ниже теоремы Русакова.

17. Теорема [1]. Пусть < A, [] > — конечная п-арная группа, (| A | $_{\pi'}$,n-1) = 1. Если соответствующая группа Поста < A $_{\circ}$, * > обладает свойством C $_{\pi}$, то < A, [] > также обладает свойством С $_{\pi}$.

Так как для любого $a \in A$ группы A_0 , a > u A, a > u A,

18. Теорема. Пусть < A, [] > – конечная п-арная группа, (| A $|_{\pi'}$, п-1) = 1. Если для некоторого а \in A группа < A, @ > обладает свойством C_{π} , то < A, [] > также обладает свойством C_{π} .

Следующая теорема является п-арным аналогом теоремы Шура-Цассенхауза.

19. Теорема. Если конечная n-арная группа < A, [] > имеет π' -холловскую конгруэнцию σ и ($|A|_{\pi'}$,n-1) = 1, то она обладает свойством C_{π} .

Доказательство. По теореме 1 [4], $< \sigma(a)$, @ > — инвариантная подгруппа группы < А, @ >, являющаяся к тому же π' -холловской. Тогда по теореме Шура-Цассенхауза, группа < А, @ > обладает свойством C_{π} , Применяя теперь теорему Русакова, заключаем, что n-арная группа < А, [] > обладает свойством C_{π} . Теорема доказана.

20. Следствие [1]. Если конечная п-арная группа < A, [] > имеет полуинвариантную π' -холловскуюп-арную подгруппу и ($|A|_{\pi'}$, n-1) = 1, то < A, [] > обладает свойством С_т.

Если ρ и σ – конгруэнции конечной n-арной группы < A, [] >, причём $\rho \subset \sigma$, то $\rho(a) \subset \sigma(a)$ и по теореме 1 [4], $< \rho(a)$, @ > и $< \sigma(a)$, @ > — подгруппы группы < A, @ > для любого $a \in A$. Так как $|\rho(a)|$ делит $|\sigma(a)|$, то $||\rho||$ делит $||\sigma||$. Поэтому следующее определение естественно.

A.A. KAllelliogg **21.** Определение. Если ρ и σ – конгруэнции конечной n-арной группы < A, [] >, причём $\rho \subseteq \sigma$, то назовём индексом ρ в σ число $||\sigma|| / ||\rho||$, которое обозначим через ||σ : ρ||, **т.е**.

$$||\sigma : \rho|| = ||\sigma|| / ||\rho||.$$

Так как $||\sigma|| = |\sigma(a)|$, $||\rho|| = |\rho(a)|$ для любого $a \in A$, то

$$||\sigma:\rho|| = |\sigma(\mathbf{a}):\rho(\mathbf{a})|.$$

Из определения также вытекает $||\sigma|| = ||\rho|| \cdot ||\sigma|| \cdot \rho||$.

Следующая теорема и следствия из неё являются п-арными аналогами теоремы С.А. Чунихина [7] о сопряжённости π -холловсих подгрупп в π -отделимой группе.

22. Теорема. Пусть конечная n-арная группа < A, [] > обладает рядом конгруэнций

$$\nabla_{\mathbf{A}} = \sigma_0 \supseteq \sigma_1 \supseteq ... \supseteq \sigma_{\mathbf{k}-1} \supseteq \sigma_{\mathbf{k}} = \Delta_{\mathbf{A}} \quad (\mathbf{k} \ge 0)$$

таких, что каждый индекс $\|\sigma_{i,j}:\sigma_{i,j}\|$ делится не более чем на одно простое число из множества простых чисел π . Тогда, если в <А, [] > существуют π -холловские п-арные подгруппы, то любые две из них полусопряжены в < А, [] >.

Доказательство. По теореме 1 [4], следующий ряд

$$A = A_0 \supseteq A_1 = \sigma_1(a) \supseteq \dots \supseteq A_{k-1} = \sigma_{k-1}(a) \supseteq \sigma_k = \{a\}$$

является нормальным рядом подгрупп группы < А, @ > для любого а ∈ А. Так как

$$|A_{i-1}:A_i|=|A_{i-1}| \ / \ |A_i|=|\sigma_{i-1}(a)| \ / \ |\sigma_i(a)|=||\sigma_{i-1}|| \ / \ ||\sigma_i||=||\sigma_{i-1}:\sigma_i||,$$

то согласно условию, каждый индекс записанного нормального ряда делится не более чем на одно простое число из π . Следовательно, $\langle A, @ \rangle - \pi$ -отделимая группа.

Если < В, [] > и <math>< С, $[] > -\pi$ -холловские n-арные подгруппы из < А, [] >, то из $|B_a| = |B|$, |C| = C следует, что |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C (|C| = C) и |C| = C следует, что |C| = C след π -отделимой группы < A, @ >, которые согласно теореме Чунихина [7] сопряжены в < А, @ ≥.

Применяя теперь лемму 14, получаем полусопряжённость п-арных подгрупп < B, [] > и < C, [] > в < A, [] >. Теорема доказана.

 Следствие. Пусть конечная п-арная группа обладает полуинвариантным рядом п-арных подгрупп, каждый индекс которого делится не более чем на одно простое число из множества простых чисел π . Тогда, если в < A, [] > существуют ф-холловские п-арные подгруппы, то любые две из них полусопряжёны в < А, [] >.

Полагая в теореме 22, $\pi = \{p\}$, получим

Следствие [8]. Если в конечной n-арной группе существуют p-силовские п-арные подгруппы, то любые две из них полусопряжёны в < А, [] >.

ЛИТЕРАТУРА

- 1. Русаков С.А. Алгебраические п-арные системы. Мн.: Навука і тэхніка, 1992. 245 с.
- 2. *Шеметков Л.А.* Формации конечных групп. М.: Наука, 1978. 272 с.
- 3. *Гальмак А.М.* Конгруэнции полиадических групп. Мн.: Беларуская навука, 1999. 182 с.
- 4. Гальмак А.М. Первая теорема об изоморфизмах для n-арных групп // VIII Белорусская мат. конф. – Минск, 2000. – Часть 2. – С.28.

- 5. Гальмак А.М. Теоремы Поста и Глускина-Хоссу. Гомель, 1997. 85 с.
- 6. **Воробьёв Г.Н.** О полусопряжённости п-арных подгрупп // Вопросы алгебры. 1996. Вып. 10. С.157-163.
- 7. Чунихин С.А. Подгруппы конечных групп. Мн.: Наука и техника, 1964. 158 с.
- 8. **Воробьёв Г.Н., Гальмак А.М.** п-Арный аналог теоремы Чунихина // Междунар. алгебраическая конф. Славянск. 1997. С.5-6.

SUMMARY

In this paper the Hall congruences of polyadic group are defined and studied.