ИНВАРИАНТНЫЕ СВЯЗНОСТИ ВЫСШЕГО ПОРЯДКА В ГРУППОМВАХ ВИ

Важной задачей современной дифференциальной геометрии является исследование структур на гладких многообразиях. Классический подход к такому исследованию основан на понятиях главного расслоения и присоединенного расслоения. Сами структуры определяются как подрасслоения в главных расслоениях или как сечения присоединенных расслоений. Такому подходу посвящены, например, работы Ш. Кобаяси и К. Номидзу [1,2]. Наряду с этим Ш. Эресман развил еще один подход к построению основ геометрии с помощью группоидов Ли и соответствующих им алгеброидов Ли. Развитие теории группоидов Ли и алгеброидов Ли дает новые возможности для их применения [3]. Примером использования такого подхода служит построение инвариантных связностей высшего порядка в группоидах Ли или, иначе, регулярных сечений расслоений элементов связностей высшего порядка относительно действия продолженного группоида Ли.

Ngo van Que [4] установил соответствие между связностями высшего порядка в группоиде Ли и расщеплениями присоединенных к нему векторных расслоений. В этой работе будут рассмотрены инвариантные связности в группоиде Ли и соответствующие им расщепления присоединенных расслоений.

Пусть (Ω, B) – группоид Ли над В, (Ω^k, B) – продолжение группоида (Ω, B) порядка k [4, 169], (E, p, B) – векторное расслоение, присоединенное к группоиду $(\Omega, B), (J^k(E), p^k, B)$ – продолжение расслоения (E, p, B) порядка k [4, 171], $(Q^k(\Omega), \pi, B)$ – расслоение элементов связностей высшего порядка [4, 186]. Далее будет использовано действие группоида (Ω^k , B) на расслоениях ($J^{k}(E)$, p^{k} , B), ($Q^{k}(\Omega)$, π , B) [4, 170, 189]. Пусть $Z = j^{k}_{\sigma} \sigma \in \Omega^{k}$, где $\sigma: B \to \Omega$, $a \circ \sigma = id$, $X = j_x^k s \in J^k(E)$, $Y = j_x^k f \in Q^k(\Omega)$, тогда:

$$Z \cdot X = j_x^k \sigma \cdot j_x^k s = j_x^k (\sigma \circ (b \circ \sigma)^{-l} \cdot S (\sigma \circ (b \circ \sigma)^{-l}),$$

$$Z \cdot Y = j_x^k (\sigma (b \circ \sigma)^{-l} \cdot (f \circ (b \circ \sigma)^{-l} \cdot \sigma(x)^{-l})), \ e \partial e \ y = b \circ \sigma(x).$$

Пусть Ω' — подгруппоид группоида Ω [4, 165]. Из определения действия группоида Ω^k на расслоении ($Q^k(\Omega)$, π , B) естественным образом следует следующее определение инвариантной связности высшего порядка относительно действия продолженного группоида (Ω') k :

Определение. Связность $c: B \to Q^k(\Omega)$ называется инвариантной относительно действия подгруппоида $((\Omega')^k, B)$, если для каждого элемента $Z = j_x^k \ \sigma \in (\Omega')^k$ выполняется условие: $c(y) = Z \cdot c(x)$.

Ngo van Que [3, 189] каждой связности порядка k в группоиде Ли Ω ставит в соответствие расщепление $\lambda_k: E \to J^k E$ точной последовательности присоединенных векторных расслоений:

$$0 \to J_0^k \quad E \to J^k E \to 0.$$

Теорема 1. Если связность $c: B \to Q^k(\Omega)$ инвариантна относительно действия подгруппоида Ли $(\Omega')^k$, то для каждого $X \in E_x$, $Z = j_x^k \ \sigma \in (\Omega')^k$ выполняется условие:

$$\lambda_k(\sigma(x)\cdot X) = Z\cdot \lambda_k(X).$$

Пусть $\Pi(E)$ — группоид послойных линейных изоморфизмов векторного расслоения $(E, p, B), \Omega'$ — подгруппоид группоида $\Pi(E)$.

Теорема 2. Если для морфизма $\lambda_k: E \to J^k(E)$ выполняется условие инвариантности $\lambda_k(\sigma(x)\cdot X) = Z\cdot \lambda_k(X)$, то соответствующая связность порядка k в группоиде Ли $\Pi(E)$ инвариантна относительно действия группоида Ли $(\Omega')^{\lambda_k}$

Литература

- 1. *Кобаяси Ш., Номидзу К.* Основы дифференциальной геометрии. М.: Наука, 1981. Т.1. 344 с.
- **2.** *Кобаяси Ш., Номидзу К.* Основы дифференциальной геометрии. М.: Наука, 1981. Т.2. 414 с.
- 3. *Mackenzie K.* Lie Groupoids and Lie Algebrois in Differential Geometrie. Cambridge University Press, 1987. 327 p.
- 4. Ngo van Que. Du prolongement des espaces fibres et des struktures infinitesimales.// Ann. Inst. Fourier. Grenoble. 1969. № 17. P. 159-223.