MellioBa АРХИТЕКТУРА И ФУНКЦИОНАЛ КОМПЬЮТЕРНОЙ ПРОГРАММЫ СИНТЕЗА ТЕХНИКИ СПОРТИВНЫХ УПРАЖНЕНИЙ В ВЫЧИСЛИТЕЛЬНОМ ЭКСПЕРИМЕНТЕ

Д. А. Лавшук, Д. Нвабуиси

(МГУ имени А. А. Кулешова, Могилев, Беларусь)

Аннотация. В статье дается описание архитектуры и функционала разработанной компьютерной программы синтеза техники физических упражнений в вычислительном эксперименте. В качестве математической модели, описывающей движение спортсмена. используется уравнение кинетического момента многозвенной разветвленной биомеханической системы, среда реализации программы – Microsoft Excel.

Ключевые слова: биомеханический синтез, моделирование движений спортсмена.

При всей перспективности использования биомеханического синтеза как инструмента поиска рациональных вариантов технических действий спортсменов, следует признать, что в практической деятельности тренерско-преподавательского состава его использование весьма ограничено. Данный факт можно объяснить слабой разработанностью методологического аппарата биомеханического синтеза, а также отсутствием инструментов, обеспечивающих практическую реализацию синтеза в вычислительных экспериментах на компьютере.

Для реализации биомеханического синтеза нами, совместно с кафедрой биомеханики БГУФК, разработана компьютерная программа, позволяющая в вычислительном эксперименте осуществлять процедуру конструирования различных вариантов технических действий спортеменов в имитационном моделировании движений на компьютере. Программа разработана в Microsoft Excel, что потенциально позволит расширить область ее применения в научной и учебной деятельности педагогов, так как навыками работы с электронными таблицами обладает большинство пользователей компьютеров.

В качестве математической модели, описывающей движения спортсмена, программа использует уравнения кинетического момента тела человека относительно оси, проходящей через точку контакта с опорой [1]:

$$L'_{z} = \sum_{i=1}^{i=N} (m_{i}(x_{i}y''_{i} - x''_{i}y_{i}) + J_{i}\omega'_{i}) = M_{mase},$$
 (1)

где N — количество звеньев моделируемой системы, L^{\prime}_{z} — момент количества движения модели тела относительно точки контакта с опорой, m_{ρ} x_{ρ} y_{ρ} $y^{\prime\prime}_{\rho}$, $x^{\prime\prime}_{\rho}$ J_{ρ} ω^{\prime}_{ρ} — соответственно параметры звена с номером i: масса, x_{i} и y_{i} — координаты центра тяжести, $x^{\prime\prime}_{i}$ и $y^{\prime\prime}_{i}$ — компоненты ускорения центра тяжести, момент инерции относительно центра масс, угловое ускорение, $M_{\text{може}}$ — момент силы тяжести относительно оси, проходящей через точку контакта с опорой.

Указанные уравнения позволяют моделировать плоскостные движения многозвенных разветвленных биомеханических систем в условиях опоры.

Решая методами численного интегрирования уравнения модели, мы получаем массив координат, описывающий траекторию движения тела спортсмена в моделируемой фазе исследуемого упражнения.

Первый этап моделирования — настройка параметров модели. Данная процедура предполагает задание численных значений массинерционных характеристик сегментов тела спортсмена, начальных условий движения (угол постановки стопы, начальная скорость вращения стопы относительно опоры), а также начального и конечного программного управления (рис. 1).

	МИХ звеньев модели					Суставные углы (программное управление)			
Параметры интегрирования		Наименование звена	Длина,	Попожение ЦМ звена, и	Масса звена, кг	Центральн ый момент инерции, кт'м2	Сустав	Угол начал ьн .	Угол
Длительность фазы	0,104	Стопа опорная	0.28	0.14	1,60	0,0105	Голеностопный опорный	-70	-3
Шаг	0.005	Голень опорная	0.42	0.21	4.00	0.0586	Коленный опорный	46	
Угол стопы	80	Бедро эпорное	0.41	0.20	9.60	0,1345	Тазобедренный м-ду ногами	-190	-10
Угловая скорость стопы	-346	Бедро маховое	0.41	0.20	9.60	0,1345	Коленный маховый	-135	
Учит силу тяж (1-да 0-нет)		Голень маховая	0.42	0,21	4.00	0.0588	Голеностопный маховый	45	
		Стопа маховая	0.28		1.60	0,0105	Тазобедненный (опора-тулов)	-35	
	XX	Туловище	0.5	0.25	34,40	0.7167	Правый плечевой	-205	
	0	Плечо правое	0.28	0.14	2,40	0,0157	Правый локтевой	105	
- 1		Предплечье правое	0.39	0.195	3.20	0.0406	Левый плечевой	-150	
1/1,		Плечо левое	0.28	0.14	2.40	0.0157	Левый локтевой	187.5	142
		Предплечье левое	0.39	0.195	3,20	0.0406			
					76,0				

Рис. 1 – Задание параметров моделируемого упражнения

Программное управление представляет собой суставные углы, реализуемые спортсменом на всей траектории движения. В принципе, это управление и переводит биомеханическую систему в конечное состояние, то есть, необходимо задание числовых значений суставных углов в каждый момент времени моделируемого движения. В программе ре-

ализован другой подход — мы задаем начальную и конечную позу моделируемого движения, а для построения программного управления в промежуточных положениях программа использует гармоническое приближение. Такое приближение наиболее соответствует реальным суставным движениям спортсмена.

Варьируя параметры модели, мы можем в вычислительном эксперименте дать ответ на вопрос, к чему приведут эти изменения. Например, изменяя масс-инерционные характеристики звеньев модели, мы получаем ответ, как влияют на траекторию движения индивидуальные антропометрических характеристики тела человека. Варьируя амплитуду программного управления в суставах спортсмена, мы можем определить вклад каждого суставного движения в достижение цели движения.

После настройки параметров модели необходимо методами численного интегрирования решить уравнение движения. Данная процедура осуществляется программой автоматически, путем нажатия кнопки «Пуск» (рис. 2).

1	W.	M N D
глы авление)	W.	District
Xron .	Угол	Пуск
-72	-28	Загрузить параметры из БД
26 184	4 268	пораметры из од
	угол начальн. -72	угол угол конечн. -72 -28 20 4

Рис. 2 – Запуск процедуры интегрирования

Результат процедуры интегрирования — вычисленные значения координат суставов на всей траектории движения. Используя расчетные модели анализа движений, возможно вычисление большого массива кинематических и динамических биомеханических характеристик, описывающих моделируемое упражнение. Программа представляет этот массив характеристик в числовой форме, а использование механизма построения диаграмм в Excel позволяет перейти к графическому описанию этих характеристик.

Кроме того, в программе предусмотрен режим построения кинетограмм моделируемых движений – возможен визуальный контроль результатов интегрирования. Экспериментатор наглядно видит, к чему приводят изменения суставных углов на всей траектории движения (рис. 3)

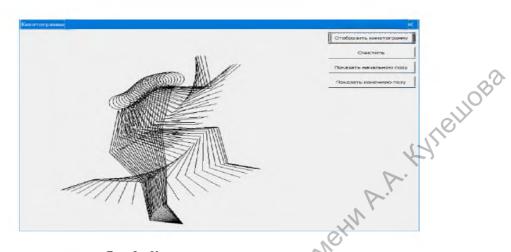


Рис. 3 – Кинетограмма моделируемого движения

Таким образом, используя программу, у педагога появляется возможность, не прибегая к практической трансформации техники индивидуального спортсмена, ответить на вопрос – к чему приведет определенная перестройка сгибательно-разгибательных действий в суставах спортсмена, как она повлияет на соревновательный результат. А это, в свою очередь, позволяет получить научно обоснованный ответ на вопрос о направлениях совершенствования техники соревновательных упражнений с целью достижения максимального спортивного результата.

Список литературы

1. Сотский, Н. Б. Измерение параметров позы и биомеханический компьютерный синтез двигательного действия человека / Н. Б. Сотский // Приборы и методы измерений, 2015. № 1 (10). – С. 114–120.