СЕКЦИЯ

УСТОЙЧИВОЕ РАЗВИТИЕ МОГИЛЕВСКОЙ ОБЛАСТИ: ЧЕЛОВЕК-ПРИРОДА-ТЕХНОЛОГИИ Hellioba

УДК 581.143:631.879

ВЛИЯНИЕ ФИЗИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ КОФЕ И ВОДНЫХ ЭКСТРАКТОВ КОФЕЙНОЙ ГУЩИ НА ВСХОЖЕСТЬ СЕМЯН СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ

Жарина Ирина Анатольевна

доцент кафедры естествознания учреждения образования «Могилевский государственный университет имени А. А. Кулешова»: кандидат биологических наук, доцент

> (г. Могилев, Беларусь) zharina@m.msu.by

Аннотация. Важнейшими биологически активными соединениями кофе являются кофеин и кофейная кислота, оказывающие выраженное физиологическое действие не только на животные, но и на растительные организмы. Оценка возможностей применения продуктов переработки кофе в растениеводстве требует исследования влияния всех его потенциально активных соединений на рост и развитие растений. В проведенном сравнительном исследовании установлено преимущественно ингибирующее влияние кофейной кислоты и кофеина на прорастание семян и начальные этапы роста проростков.

Цели устойчивого развития в отрасли сельского хозяйства направлены в долгосрочной перспективе на достижение баланса между экономическими, социальными и экологическими аспектами развития. Одним из направлений, способствующих реализации указанных целей является применение в сельскохозяйственной практике природных регуляторов роста, природных индукторов повышения устойчивости растений, замена химических удобрений органическими, а также использование продуктов или отходов переработки растениеводства. Перспективным источником росторегуляторов и питательных веществ являются продукты переработки кофе, в том числе кофейный жмых и кофейная гуща, которые содержат большое количество питательных и физиологически активных веществ и потенциально могут принести пользу растениеводству. Их использование снижает пестицидную нагрузку на почву и природу в целом, может улучшить качество урожая и увеличить стойкость растений к заболеваниям [4].

Начальные этапы роста растений, включая всхожесть и прорастание семян, являются критическими моментами в жизненном цикле растений. Любые внешние факторы, в том числе химические вещества, могут оказывать влияние на эти процессы и таким образом определять последующий рост и формирование урожая.

Одним из важнейших физиологически активных веществ кофе является кофеин. Кофеин — это алкалоид, который может оказывать как положительное, так и отрицательное физиологическое влияние на растительные организмы в зависимости от его концентрации и дозировки. Обзор современной литературы показывает, что кофеин может стимулировать рост и развитие растений, увеличивать продуктивность, повышать устойчивость к неблагоприятным условиям окружающей среды и защищать от патогенных микроорганизмов. Он также является натуральным инсектицидом и может быть использован для отпугивания вредителей. Есть данные, что кофеин может стимулировать рост корней, увеличивать количество цветков и плодов, а также повышать устойчивость растений к болезням и вредителям. Однако, высокие концентрации кофеина могут оказывать токсическое действие на растения, вызывая замедление роста, изменения физиологических процессов и даже гибель [4].

Кофеин (1,3,7-триметилксантин) представляет собой алкалоид пуринового ряда. Данное вещество относится к так называемым аллелопатическим соединениям – вторичным метаболитам, вырабатываемым конкретными видами живых организмов и способным оказывать прямое либо опосредованное, стимулирующее или ингибирующее воздействие на объекты, относящиеся к тому же или другим систематическим таксонам [2, 8]. Аллелопатический эффект кофеина на клеточном уровне был изучен достаточно подробно. Известно, что он может оказывать мутагенное воздействие на бактериальные клетки, а также ингибировать формирование клеточной пластинки в процессе цитокинеза у растений. Кроме того, кофеин непосредственно влияет на внутриклеточную концентрацию ионов Ca^{2+} и опосредованно – на антагонизм рецепторов аденозина, а также биохимические механизмы восприимчивости нарушений молекулярной структуры ДНК. Подобный эффект позволяет использовать данное аллелопатическое соединение для подавления

роста и развития грамположительных бактерий наряду с антибиотикотерапией. В то же время присутствие кофеина в почве оказывает негативное воздействие на локальную микробиоту, нарушая тем самым экологический баланс, что может отрицательным образом повлиять на рост и развитие местных многоклеточных организмов [9]. Что касается непосредственного влияния кофеина на онтогенез цветковых растений, то вплоть до настоящего времени не существует однозначного мнения об эффекте как самого кофеина, так и экстрактов семян кофе на рост и развитие сельскохозяйственных культур и других видов [3].

Кофейная кислота органическое соединение, классифицируемое как гидроксикоричная кислота. Она содержится не только в кофе, но также в коре эвкалипта, некоторых папоротниках, многих травах и других растительных объектах. Для выявления роли гидроксикоричных кислот в реакциях метаболизма важно использовать не их смесь, а участие отдельных представителей, так как каждый из них имеет особенности в строении и, как следствие, обладает спецификой действия. Так, большинство гидроксикоричных кислот (п-оксикоричная, феруловая, синаповая) в растительном организме находятся в связанном состоянии, тогда как кофейная кислота — в основном, в свободном виде [5].

Показано, что кофейная кислота повышает устойчивость растений к действию биотических факторов: к вирусным инфекциям у плодовых и ягодных культур, к мучнистой росе у пшеницы, к ржавчинной инфекции у ржи. Лишь в единичных работах отмечается ее роль в устойчивости растений к абиотическим факторам среды [5]. В ряде работ показано действие кофейной кислоты на ростовые реакции органов растений, однако при этом отмечается ее неоднозначный эффект [1].

В экспериментах с картофелем установлено, что кофейная кислота стимулировала накопление сухого вещества. Прирост составил 22%. Это происходило на фоне неизменного содержания суммы хлорофиллов. При этом кофейная кислота значительно (в 1,4 раза) активизировала реакции световой фазы фотосинтеза, а именно фотохимическую активность хлоропластов. Авторы предполагают, что это может быть связано с возрастанием содержания каротиноидов в светособирающем комплексе 2-й фотосистемы. Известно, что каротиноиды обладают антиоксидантными свойствами и тем самым защищают хлорофилл от окисления активными формами кислорода. Кроме того, кофейная кислота влияет на уровень эндогенных фитогормонов. Данные свидетельствуют, что обработка растений кофейной кислотой на

36% повышает уровень ауксинов в листьях. Такое действие кофейной кислоты может быть связано с тем, что фенолы инактивируют ИУКоксидазу [6].

Показано, что отходы кофейного производства увеличивают содержание гумуса в почве, содержание калия, повышают ферментативную активность почв, что реализуется в прибавке урожайности растений [7]. Однако из-за поливалентности действия биологически активных веществ кофе на растительные организмы в различных условиях предварительно требуется оценка влияния как отдельных компонентов, так и их смесей на рост и развитие растений, на качественный и количественный состав почвенной микробиоты.

В связи с этим целью нашего исследования являлось изучение влияния растворов кофеина и кофейной кислоты, а также водных экстрактов кофейной гущи на показатели всхожести семян сельскохозяйственных растений.

В качестве объектов исследования были выбраны растения, относящиеся к разным систематическим классам: пшеница (мягкая яровая, Дарья) и томаты (Золотой юбилей F1). Определение энергии прорастания семян и всхожести осуществлялось согласно ГОСТ 12038-84 Семена сельскохозяйственных культур. Влияние физиологически активных веществ исследовалось в растворах различных концентраций: кофеин — 0,050, 0,075, 0,100 и 0,125 г/100 мл воды, кофейная кислота — 0,01, 0,02. 0,03, 0,04 и 0,05 г на 100 мл воды. Влияние водных экстрактов кофейной гущи исследовалось в растворах концентраций: 10, 20 и 40 г кофейной гущи на 100 мл воды. Экстрагирование проводилось водой разной температуры: 20° С (X) и 100° С (Г), продолжительность настаивания — 2 часа. Контролем во всех случаях служили семена, проращиваемые в воде. Согласно предварительным определениям, содержание кофеина и кофейной кислоты в водных экстрактах кофейной гущи было близко к их содержанию в исследуемых водных растворах.

Результаты исследования влияния водных растворов кофеина на показатели всхожести семян показали (таблица 1), что кофеин снижает энергию прорастания на 40-50% у томатов и на 12-16% у пшеницы относительно контрольного варианта. Эффект у обоих культур усиливается с увеличением концентрации раствора. При этом у пшеницы концентрации 0,050 и 0,075 г/100 мл не проявили отрицательного влияния на энергию прорастания, а даже увеличили ее на 4% относительно контроля.

Таблица 1 Влияние растворов кофеина на показатели всхожести семян

Вариант	Концентрации	Энергия прорастания, %	Всхожесть, %
Пшеница	Контроль	92,0	100,0
	0,050 г/100 мл	96,0	100,0
	0,075 г/100 мл	96,0	100,0
	0,100 г/100 мл	80,0	86,0
	0,125 г/100 мл	76,0	84,0
Томаты	Контроль	50,0	70,0
	0,050 г/100 мл	10,0	60,0
	0,075 г/100 мл	0,0	33,3
	0,100 г/100 мл	0,0	40,0
	0,125 г/100 мл	0,0	30,0

Сходная закономерность проявляется и в отношении всхожести семян. Растворы кофеина снижали всхожесть семян томата относительно контроля на 10-40%, тем больше, чем выше концентрация раствора. Отрицательный эффект в отношении всхожести семян пшеницы проявился только в концентрациях 0,100 г на 100 мл и 0,125 г на 100 мл, снижение составило 14% и 16% соответственно.

Таким образом, кофеин обладает ингибирующим влиянием на прорастание семян. В большей степени этот эффект проявился в отношении семян томатов, пшеница показала себя более устойчивой к негативному воздействию. Обе культуры продемонстрировали дозазависимый эффект.

Анализ воздействия кофейной кислоты показал, что энергия прорастания семян повышается относительно контроля у пшеницы при концентрации кофейной кислоты 0,01 г/100 мл на 18%. В более высоких концентрациях энергия прорастания снижается, причем больше всего при концентрациях 0,02 и 0,03 г/100 мл (таблица 2). Сходная зависимость отмечается и в отношении показателя всхожести семян: увеличение относительно контроля только в варианте 0,01 г/100 мл на 14%. У томатов же использование кофейной кислоты во всех вариантах повышает всхожесть семян, причем тем больше, чем выше концентрация. Таким образом, низкие концентрации кофейной кислоты могут повышать всхожесть семян сельскохозяйственных растений.

 ${\it Taблица}~2$ Влияние кофейной кислоты на показатели всхожести семян

Вариант	Концентрации	Энергия прорастания, %	Всхожесть, %
Пшеница	Контроль	70	78
	0,01 г / 100 мл	88	92
	0,02 / 100 мл	64	68
	0,03 / 100 мл	64	70
	0,04 / 100 мл	84	88
	0,05 / 100 мл	82	88
Томаты	Контроль	0	56
	0,01 / 100 мл	0	68
	0,02 / 100 мл	0	68
	0,03 / 100 мл	0	59
	0,04 / 100 мл	0	63
	0,05 / 100 мл	0	70

В отношении влияния на показатели вехожести семян водных экстрактов кофейной гущи общих закономерностей не выявлено. У пшеницы энергия прорастания семян снижалась относительно контроля в вариантах $10~\rm r/100~\rm mn$ Γ и $40~\rm r/100~\rm mn$ Γ на 6% и 10%, и была на 6% выше контроля в варианте $20~\rm r/100~\rm mn$ Γ В остальных вариантах показатели были идентичны контрольным или весьма близки к ним. Сходные данные характеризуют и вехожесть семян пшеницы. В вариантах $10~\rm r/100~\rm mn$ Γ и $40~\rm r/100~\rm mn$ Γ она ниже контрольной на 6% и 10% соответственно, в остальных случаях — весьма близка к контролю (таблица 3).

У томатов энергия прорастания снижалась во всех опытных вариантах на 30-60% относительно контроля, а всхожесть семян была ниже контроля лишь при использовании кофейной гущи в количестве $10~\rm r/100~\rm m$, Γ и $20~\rm r/100~\rm m$, Γ на 30%.

Реакция растительных организмов на действие физиологически активных веществ может существенно различаться в зависимости от генотипа, что демонстрируют и результаты приведенного исследования.

Таблица 3 Влияние водных экстрактов кофейной гущи на показатели всхожести семян

	Пшеница		Томаты	
	Энергия прорастания, %	Всхожесть, %	Энергия прорастания, %	Всхожесть, %
Контроль	94	98	60	60
10 г / 100 мл Х	88	92	20	30
10 г / 100 мл Γ	96	96	30	60

	Пшеница		Томаты				
	Энергия прорастания, %	Всхожесть, %	Энергия прорастания, 66	Всхожесть, 00			
20 г / 100 мл Х	96	96	30	60			
20 г / 100 мл Г	100	100	10	30	20		
40 г/ 100 мл Х	94	96	0	60	.00		
40 г / 100 мл Г	84	88	20	60			
Снижение энергии прорастания семян томатов в водных экстрактах							

Снижение энергии прорастания семян томатов в водных экстрактах кофейной гущи снижается меньше, чем в растворе кофеина. Энергия прорастания семян пшеницы в водных экстрактах кофейной гущи не демонстрирует какой-либо выраженной зависимости от результатов, полученных в растворах отдельных компонентов. Подобная зависимость отмечается и для показателя всхожести — у томатов в водных экстрактах кофейной гущи она находится между значениями, полученными в растворах отдельных веществ, у пшеницы закономерной тенденции не определяется.

Таким образом, влияние водных экстрактов кофейной гущи существенно отличается от влияния растворов кофеина и кофейной кислоты на показатели всхожести семян, что, вероятнее всего, обусловлено комплексным действием содержащихся в них физиологически активных вешеств.

Список литературы

- Волынец А. П., Башко Н. П. Росторегулирующая активность фенольных конъюгатов // Фенольные соединения: фундаментальные и прикладные аспекты / Научный мир; под ред. Н. В. Загоскиной, Е. Б. Бурлаковой. Москва, 2010. С. 265-271.
- 2. Вторичные метаболиты растений: физиологические и биохимические аспекты. Часть 2. Алкалоиды: учебно-методическое пособие / Й. Р. Абдрахимова. Казань: Каз. гос. ун-т. 2009. 40 с.
- 3. Гордеева Й. В., Алешина Л. В. Изучение влияния кофеина на всхожесть и рост Fagopyrum esculentum М. и Linum usitatissimum L. в почвенных условиях / И. В. Гордеева, Л. В. Алешина // Международный научно-исследовательский журнал. 2017. № 7-2 (61). С. 13-17.
- 4. Жарина, И. А. Возможности использования биологически активных соединений продуктов переработки кофе в растениеводстве / И. А. Жарина // Проблемы устойчивого развития регионов Республики Беларусь и сопредельных стран : сб. науч. ст. XII Междунар. науч.-практ. интернет-конф., 26 мая 2023 г., г. Могилев / под ред. Н. В. Маковской. Могилев : МГУ имени А. А. Кулешова, 2023. С. 46–50.
- Макеева И. Ю., Пузина Т. И. Участие кофейной кислоты в регуляции физиологических процессов растений картофеля в условиях гипотермии / И. Ю. Макеева, Т. И. Пузина // Вестник аграрной науки. 2017. №. 1 (64). С. 60-65.
- 6. Пузина, Т. И. Участие кофейной кислоты в регуляции продукционного процесса картофеля Solanum tuberosum L / Т. И. Пузина // Агрохимия. -2015. -№ 6. C. 53-58.

, tely had a Karle July

- Сюняева, О. И. Влияние отходов кофейного производства на агрохимические и биологические свойства дерново-подзолистой супесчаной почвы и урожайность овса / О. И. Сюняева, Ю. В. Леонова // Земледелие. – 2022. – № 5. – С. 7-11.
- 8. Caffeine Chemical Formula [Электронный ресурс]. Режим доступа: https://www.geeksforgeeks.org/caffeine-chemical-formula//. Дата доступа: 10.06.2024.
- 9. Montes, O. Doses of caffeine on the development and performance of pepper crops under greenhouse / O. Montes, F. Dianez, F. Camacho // Horticultura Brasileira, 2014. Vol. 32. No. 4. 398 p.