ПОКАЗАТЕЛЬНЫЕ И ПОКАЗАТЕЛЬНО-СТЕПЕННЫЕ УРАВНЕНИЯ В РАМКАХ КРУЖКОВОЙ И ВНЕКЛАССНОЙ РАБОТЫ ПО МАТЕМАТИКЕ

Травин Вадим Владимирович

учитель математики первой категории ГУО «Гимназия г. Калинковичи» (г. Калинковичи, Беларусь)

Аннотация. В данной статье рассматриваются основные задачи, связанные с показательными и показательно-степенными уравнениями. Также рассмотрены основные методы решений таких уравнений. Показаны основные подходы, которые выделяются в решении таких задач для рассмотрения на кружках и внеклассной работе для увеличения уровня развития и нестандартного мышления учащихся.

С выражениями и степенями известно множество самых разнообразных теоретических и практических задач, например, поиск процентов в счетах вкладов и расчёт прибыли. Выделяют такие понятия, как степени и показатели, которые могут быть самой разнообразной природы: от натуральных чисел до иррациональных. Так, например, в базовом уравнении $2^x = 32$ ответ известен и равен 5. Однако обобщение понятия степени при любых значениях переменных может отразить достаточно важную суть математических понятий и обозначений. Так, уравнение $3^x = 5$ без понятия логарифма является вопросом на засыпку.

3ada4a. Решите уравнение $3^x = 5$.

Решение. Ответ в задаче через логарифм известен: $x=\log_3 5$. Если понятие логарифма неизвестно, то можно ли самостоятельно получить ответ на вопрос задачи? Для этого будем рассматривать приближения ответа по недостатку и по избытку. А именно заметим, что $3^1 < 3^x = 5 < 3^2$. Это означает, что искомый показатель x находится между числами 1 и 2. Далее имеем, $4,6555367...=3^{1,4} < 3^x = 5 < 3^{1,5} = 5,196152...$ То есть требуемый показатель находится между числами 1,4 и 1,5. Далее получим исходя из приближений: $4,972754...=3^{1,46} < 3^x = 5 < 3^{1,47} = 5,027687...$, что показывает расположение нашего показателя между числами 1,46 и 1,47. Продолжая данный процесс, мы получим иррациональное число, которое и есть наш логарифм: $x = \log_3 5$.

Omeem: log₃5.

А на каком основании мы можем утверждать, что у нас получится именно это число? На самом деле при постоянном увеличении точности левое и правое число будут стремится к одному и тому же числу. Это говорит о том, что и $3^{\rm a}=5$, которое расположено между ними также будет стремиться к этому же числу. Полное доказательство данного факта опирается на теоремы курса математического анализа и выходят за рамки программы общего среднего образования.

Тем не менее, фразы «возвести в степень» и «взять логарифм» имеют разное объяснение для степеней из разных множеств. Так, определение для натуральных чисел имеет следующее объяснение: запись 7¹³ означает умножение числа 7 указанное (13) количество раз. Но не

всегда видно сразу, сколько раз нужно умножить число, чтобы получить требуемый результат.

Задача. Решите уравнение $(2+\sqrt{3}) = 7+4\sqrt{3}$.

Решение. Ответ в задаче можно записать через логарифм от иррациональных выражений, но мы поступим несколько иначе. Дело в том, что по формуле квадрата суммы получим следующее; $7+4\sqrt{3}=2^2+\left(\sqrt{3}\right)+2\cdot2\cdot\sqrt{3}=\left(2+\sqrt{3}\right)$. Это означает, что уравнение имеет вид $\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)$, откуда окончательно имеем x=2.

Ответ: 2.

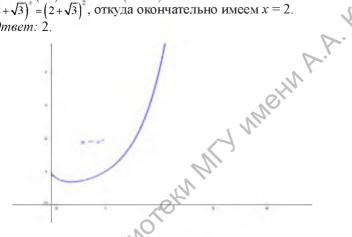


Рисунок 1. График функции $y = x^x$

Тем не менее, для дальнейших чисел операция возведения в степень сталкивается с рядом спорных моментов и ограничений для введения определений. Для отрицательных чисел, например, определение гласит, что $6^{-5} = \frac{1}{\kappa^5}$. Обобщая, можно записать справедливое равенство $a^{-k} = \frac{1}{\alpha}$, где числа $a \in \square \setminus \{0\}$ и $k \in \square$. Однако для нуля отрицательную степень определить так не получится, поскольку на ноль в натуральной степени нельзя делить. Возведение в нулевую степень позволяет записать, например, такие равенства: $2^0 = (-5)^0 = 1$. Возможно ли при этом записать, что справедливо равенство $0^{\circ} = 1$?

Для ответа на этот вопрос рассмотрим график функции $y = x^x$ (рис. 1). Исходя из расположения графика в первой четверти можно сказать, что если и определить число ноль в нулевой степени, то его значение расположено около единицы.

Также обратим внимание на то, что с увеличением аргумента при значениях x > 1, возрастает и значение функции. Это означает, что при x > 1 функция возрастает.

 $3a\partial a$ ча. Решите при x > 1,3 уравнение $x^x = 4$.

тающей на данном промежутке, то данное уравнение имеет не более одного корня. Так как $2^2 = 4$, то x = 2.

 $y - x^*$ является возрас-данное уравнение имеет не более $x = x^*$ данное уравнение имеет не более $x = x^*$ данное уравнение имеет не более $x = x^*$ данное уравнения на $x^* = x^*$ данное условия уравнения на $x^* = x^*$ при любых значени-ргумента подталкивает на поиск ответов на вопросы, связания ниманием понятия степени. Например, вопрос $x = x^*$ является возрас-должение имеет не более $x = x^*$ является возрас-данное уравнения $x^* = x^*$ является возрас-данное уравнения $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ является возрас-данное уравнение имеет не более $x = x^*$ уравнение $x = x^*$ уравнение $x = x^*$ и данное уравнение $x = x^*$ уравнение $x = x^*$ уравнение $x = x^*$ и данное уравнение $x = x^*$ уравнение $x = x^*$ уравнение $x = x^*$ и данное уравнение $x = x^*$ уравнение x = xях аргумента подталкивает на поиск ответов на вопросы, связанные с пониманием понятия степени. Например, вопрос о том, является ли x = -2 корнем этого уравнения? И также вопрос о том, как искать корни данного уравнения?

Уравнения, в которых переменная входит как в основание, так и в показателе степени, называются показательно-степенными. Одним из основных таких уравнений принято считать уравнение вида $f(x)^{g(x)} = f(x)^{h(x)}$. где f(x), g(x) и h(x) представляют собой выражения с переменными [1. с. 72]. До сих пор нет единого соглашения касательно способов решения данных уравнений и трактовок понятия корней таких уравнений. Для понимания примерного алгоритма решения таких уравнений, рассмотрим пример.

Задача. Решите уравнение $x^{2x+4} = x^{20}$.

Решение. Из условия не следует ограничения на переменную x > 0. Для решения уравнения рассмотрим следующие варианты возможных решений. Первый случай, это когда x = -1 и выражения 2x + 4 и 20 при этом имеют одинаковую чётность. Это так, поскольку при x = -1 число 20 и выражение 2x + 4 = 2 оба чётные. Второй случай, когда x = 0 и выражения 2x + 4 и 20 при этом должны быть больше нуля. Это выполнено, так как 2x + 4 = 4 > 0. Третий случай, когда x = 1 и выражения 2x + 4и 20 оба должны иметь смысл, что выполнено. И, наконец, последний случай, когда 2x + 4 = 20 и выражения x^{2x+4} и x^{20} имеют смысл. Решая последнее уравнение, находим x = 8. При нём выражения $8^{2 + 4}$ и 8^{20} равны между собой и имеют смысл.

Ответ: -1, 0, 1 и 8.

Выделим комментарий к предыдущей задаче. В рамках решения уравнений достаточно часто используют решение с использованием свойств функций. Если предыдущее уравнение рассматривать с точки зрения функционального подхода, то функция в левой части равенства $f(x) = x^{2x+4}$ считается, как правило, определённой при x > 0. В этом случае ответы -1 и 0 нам не подходят. Это замечание относится и к неравенствам, содержащим показательно-степенные выражения.

Задачи внеклассной работы для самостоятельного решения (в скобках указаны ответы):

- 1. Решите уравнение $4^x = 5$. (Ответ: $\log_4 5$)
- 2. Решите уравнение $(1+\sqrt{2}) = 3+2\sqrt{2}$. (Ответ: 2)
- 3. Существует ли натуральное число n, при котором справедливо равенство $(\sqrt{n}-1)=3-n\sqrt{n}$? (Ответ: Да; 2)
- 4. В какую степень надо возвести число $\sqrt{2}+1$, чтобы получить число $\sqrt{2}-1$? [2, c, 64] (Ответ: -1)
- 5. Рациональным или иррациональным является число $\log_2 4$? (Ответ: Рациональным)
 - 6. Является ли число $\log_{2+\sqrt{7}} \left(11+4\sqrt{7}\right)$ целым? (Ответ: Да)
 - 7. Решите при x > 1 уравнение $x^x = 3125$. (Ответ: 5)
 - 8. Решите уравнение $x^{x+3} = x^{20}$. (Ответ: -1; 0; 1; 17)

Список литературы

Нелин, Е. П. Алгебра 7–11 классы. Определения, свойства, методы решения задач в таблицах. Сер. Комплексная подготовка к ЕГЭ и ГИА. М.: ИЛЕКСА, 2014. – 128 с.: ил.
Травин, В. В. Решение нестандартных задач по алгебре, геометрии, комбинаторике, теории графов, теории множеств: учебное пособие / В. В. Травин. – Минск: Адукацыя і выхаванне, 2019. – 128 с.: ил. – (Серия «Коллекция идей»).