Э. И. КОВАЛЕВСКАЯ, Н. В. САКОВИЧ

АНАЛОГ ТЕОРЕМЫ ПЯРТЛИ ДЛЯ АНАЛИТИЧЕСКИХ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

Пусть I — отрезок в \mathbf{R} , D>0; функции $f_i(x)$ —(n+1) раз непрерывно дифференцируемы на I ($1 \le i \le n$) и в каждой точке $x \in I$ удовлетворяют неравенствам:

$$\max_{1 \leqslant j \leqslant n+1} |f^{(j)}(x)| \leqslant D, \max_{1 \leqslant j \leqslant n} |f^{(j)}(x)| \geqslant d > 0.$$

В [1] А. С. Пяртли установил, что для почти всех $x \in I$ («почти все» в смысле меры Любега в R) неравенство $|a_0+a_1f_1(x)+\ldots+a_nf_n(x)| < A^{-\sigma}$, где $A=\max_{0\leqslant i\leqslant n}|a_i|>0$, имеет при $v>n^2+n+1$ только конечное число решений в целых числах $(a_0,\ a_1,\ \ldots,\ a_n)$. Тем самым был получен один из вервых метрических результатов о диофантовых приближениях для точек гладких кривых из $\mathbb{R}^n,\ n\geqslant 1$.

Метрические характеристики играют важную роль в вопросах изучения малых значений последовательностей функций, так как показывают характер аппроксимации нуля «в целом» тогда, когда изучить индивидуальные свойства не удается. В случае поля действительных чисел по этим вопросам имеется общирная литература [2—4]. Случай комплексных чисел изучен гораздо хуже, хотя именно такие вопросы возникают в ряде задач математической физики [5].

До сих пор в приложениях метрические теоремы для аналитических функций f(z), где z=x+iy, доказывались отдельно для действительной и мнимой частей аргумента. В данной работе доказана теорема, устанавливающая новую метрическую характеристику приближений точек комплексной кривой в $\mathbf{C}^n = \mathbf{C} \times ... \times \mathbf{C}$ векторами с целыми гауссовыми координатами. В дальнейшем используем меру Лебега в \mathbf{C} , которая понимается как мера Лебега в \mathbf{R}^2 . Меру Лебега измеримого множества X будем обозначать через μX .

ства X будем обозначать через μX . Теорема. Пусть $f_1(z)$, ..., $f_n(z)$ — аналитические функции в круге $K_{z_0}(r)$ с центром в точке z_0 раднуса r>0. Положим $\mathbf{a}=(a_0,a_1,...,a_n)\in \mathbf{Z}^{n+1}$, $\mathbf{a}\neq (0)$, $\mathbf{f}(z)=(1,\ f_1(z),\ ...,\ f_n(z))$, $F(z)=(\mathbf{a},\ \mathbf{f}(z))^{\frac{n}{2}}$ скалярное произведение, $A=\max_{0\leqslant i\leqslant n}|a_i|$. Тогда для почти всех $z\in K_{z_0}(r)$ неравенство $|F(z)|< A^{-w}$ имеет при $w>2n^2+n-3$ только конечное число решений

в векторах а. Докажем несколько вспомогательных утверждений.

Лемма i1. Пусть $\delta>0$, $F(z)=a_0+a_1f_1(z)+...+a_nf_n(z)$, где $f_1(z)$, ..., $f_n(z)$ — аналитические функции в круге $K_{z_0}(r)$ с центром в точке z_0 радиуса r>0, $a_i\in \mathbb{Z}$ $(0\leqslant i\leqslant n)$. Пусть вронскиан

$$\Delta(z) = \begin{vmatrix} f'_1(z) \dots f'_n(z) \\ \vdots \\ f_1^{(n)}(z) \dots f_n^{(n)}(z) \end{vmatrix}, \quad |\Delta(z)| > \delta$$

и $\rho = \max_{1\leqslant i,j\leqslant n} (\sup_{z\in K_{z_0}(r)} |f_i^{(j)}(z)|)$. Тоеда в каждой точке $z\in K_{z_0}(r)$ существует такое $j,\ 1\leqslant j\leqslant n,\$ что $|F^{(j)}(z)|>c_1(\delta)\,A,\$ еде $c_1(\delta)=\delta/n\rho^{n-1},\ A=\max_{0\leqslant i\leqslant n} |a_i|>0.$

Доказательство проводится методом от противного, как в лемме 1 из [6]: Лемма 2. Пусть $\alpha > 0$, f(z)— аналитическая функция в круге K_{z_1} (r), $|f(z)| \leq M$, $|f^{(n)}(z)| > \alpha$ для $z \in K_{z_1}(r)$, $n \geq 1$. Пусть $f(z_1) = 0$, $S_n = \sum_{n=0}^{\infty} (k+1)^{n-1} 2^{-nk}$, число δ_1 удовлетворяет условию: $0 < \delta_1 < \min(1, 1)$

 $a (2r)^n/n! S_n (M+1)$. Положим $\delta = \delta_1 r/2^n$. Тогда в круге $K_{z_1}(\delta)$ существует не более n нулей функции f(z).

Доказательство. Предположим противное, т. е. $f(z_i) = 0$ ($1 \leqslant i \leqslant n+1$), $z_i \in K_{z_i}(\delta)$. Так как функция f(z)— аналитическая в круге $K_{z_i}(\delta)$, то в точках z_i ($2 \leqslant i \leqslant n+1$) получим

$$0 = f'(z_1)(z_i - z_1) + \frac{f''(z_1)}{2!}(z_i - z_1)^2 + \dots + \sum_{k=n+1}^{\infty} \frac{f^{(k)}(z_1)}{k!}(z_i - z_1)^k.$$

Отсюда для i = 2, ..., n+1 имеем

$$0 = f'(z_1) + f''(z_1)(z_i - z_1)/2! + \dots + \sum_{k=n+1}^{\infty} f^{(k)}(z_1)(z_i - z_1)^{k-1}/k!$$

Вычитая поочередно из равенства для i=2 оставшиеся n-1 равенств и сокращая полученное j-е равенство на (z_2-z_j) $(3\leqslant j\leqslant n+1)$, получим

$$0 = f''(z_1)/2! + f'''(z_1)(z_2 - 2z_1 + z_i)/3! + \dots + \sum_{k=n+1}^{\infty} c_k \sum_{m=0}^{k-n} (z_2 - z_1)^{k-2-m} \times$$

 $\times (z_i - z_1)^m$, $(3 \leqslant i \leqslant n+1)$.

Применяя к вновь полученным равенствам вышеизложенные рассуждения n—3 раза, учитывая, что при вычитании взаимно уничтожаются старшие слагаемые, не зависящие от z_i , и что старшая степень оставшихся слагаемых равна k—n, находим

$$0 = f^{(n)}(z_1)/n! + \sum_{k=n+1}^{\infty} c_k \sum_{m=0}^{k-n} (z_2 - z_1)^{k-n-m} \sum_{r_1=0}^{m} (z_3 - z_1)^{m-r_1} \dots$$

$$\sum_{r_{n-2}=0}^{r_{n-3}-1} (z_n-z_1)^{r_{n-3}-r_{n-2}-1} (z_{n+1}-z_1)^{r_{n-2}} = f^{(n)}(z_1)/n! + R. \tag{1}$$

Оценим ряд R, используя неравенства $|z_i - z_1| \le \delta < 1 (2 \le i \le n+1)$ неравенство Қоши для коэффициентов c_k :

$$|R| \leq \sum_{k=n+1}^{\infty} (M+1)r^{-k} \sum_{m=0}^{k-n} \delta^{k-n} \sum_{r_1=0}^{m} \sum_{r_2=0}^{r_1} \cdots \sum_{r_{n-2}=0}^{r_{n-3}-1} 1.$$

Положим k-n=q. Тогда

$$|R| \leqslant \sum_{q=1}^{\infty} (M+1) r^{-q-n} \sum_{m=0}^{q} \delta^{q} (q+1)^{n-2} = (M+1) (2r)^{-n} \delta_{1} \times$$
(2)

$$\times \sum_{q=1}^{\infty} \delta_1^{q-1} (q+1)^{n-1} 2^{-nq-1} < (M+1) (2r)^{-n} \delta_1 \sum_{q=1}^{\infty} (q+1)^{n-1} 2^{-nq-1}.$$

По признаку Даламбера ряд в (2) сходится. В обозначениях леммы его сумма равна S_n . Следовательно, $|R| < (M+1)(2r)^{-n}\delta_1 S_n < \alpha/2n!$ Тогда из условия леммы имеем

$$|f^{(n)}(z_1) + Rn!| > \alpha/2.$$
 (3)

Но (3) противоречит (1). Лемма доказана.

 Π е м м а 3. Пусть a, r, M, ε — положительные числа, f(z) — аналитическая функция ε круге $K_{z_0}(r)$, удовлетворяющая условиям: |f'(z)| > a, $|f(z)| \leq M$. Пусть $\delta = \min(r/2, r^2a/5M)$. Положим $\sigma(f, \varepsilon) = \{z \in K_{z_0}(r): |f(z)| < \varepsilon\}$. Тогда $\mu\sigma(f, \varepsilon) \leqslant 16\pi(\varepsilon a^{-1})^2$, еде μ — мера Лебега, упомянутая во введении.

Доказательство см. в [7, лемма 4].

J емма 4. Пусть $\gamma = \gamma$ (m), r, ϵ , M = M (m) — положительные числа, f(z) — аналитическая функция в $K_{z_0}(r)$, удовлетворяющая условиям: $|f^{(j)}(z)| \leq M$ ($0 \leq j \leq n$), $|f^{(n)}(z)| > \gamma$ для $n \geqslant 2$, $|f^{(j)}(z)|$ — монотонная функция при изменении аргумента по любому лучу, выходящему из z, $z \in K_{z_0}(r)$ ($0 \leq j \leq n$). Пусть величины γ (m) и M (m) имеют одинаковый порядок роста при $m \to \infty$. Положим $\sigma(f, \epsilon) = \{z \in K_{z_0}(r) : |f(z)| < \epsilon\}.$

Тогда 1) $\mu \sigma(f, \varepsilon) < c_1(n, r) (\varepsilon \gamma^{-1})^{2/n}$, если величины $\rho(m) = (\varepsilon^{n-1} \gamma (m))^{1/n}$ и M(m) имеют одинаковый порядок роста при $m \to \infty$;

2) $\mu\sigma(f, \varepsilon) < c_2(n, r) (M\varepsilon)^{2/(2n-1)} \gamma^{-4/(2n-1)}$, ecau $\rho_1(m) = (M\varepsilon)^{1/(2n-1)} \times \gamma^{(2n-3)/(2n-1)} < M(m)$.

Здесь $c_1(n, r)$, $c_2(n, r)$ — константы, зависящие только от n, r. Если одновременно выполняются указанные условия для величин $\rho(m)$, $\rho_1(m)$, M(m), то для $\mu\sigma(f, \varepsilon)$ выбираем минимальную верхнюю оценку.

Доказательство. Рассмотрим случай 1). Для него лемма доказана при $n=1,\ 2$ [7, леммы 4,5]. Пусть $n\geqslant 3$. Доказательство проведем методом математической индукции. Предположим, что лемма верна для n-1. Множество $\sigma(f,\ \epsilon)$ разделим на два подмножества: $\sigma_1=\{z\in K_{z_0}(r):|f^{(n-1)}\times \times (z)|>\rho\},\ \sigma_2=\{z\in K_{z_0}(r):|f^{(n-1)}(z)|\leqslant\rho\},\ r$ де $\rho=(\epsilon\gamma^{n-1})^{1/n}$. По предложению индукции имеем $\mu\sigma_1< c_1\ (n=1,\ r)\ (\epsilon\rho^{-1})^{2/(n-1)}$, если величины $(\epsilon^{n-2}\rho)^{1/(n-1)}$ и M имеют одинаковый порядок роста на ∞ . Меру множества σ_2 оценим с помощью леммы 3, поскольку $f^{(n)}(z)$ играет такую же роль для $f^{(n-1)}(z)$, что и f'(z) для f(z). Поэтому в силу указанного свойства монотонности $|f^{(n)}(z)|$ имеем $\mu(\sigma_2\cap K_{z_0}(\delta_2))\leqslant 16\pi\ (\epsilon\gamma^{-1})^2$, где $z_2\in K_{z_0}(r)$, $\delta_2=\min\ (r/2,\ r^2\gamma/4M)$. Из условия на величины γ и M получаем, что отношение площадей кругов $K_{z_0}(r)$ и $K_{z_2}(\delta_2)$ равно константе, зависящей только от r. Следовательно, $\mu\sigma_2\leqslant c_2(r)\ (\epsilon\gamma^{-1})^2$,

$$\mu\sigma(f, \epsilon) = \mu\sigma_1 + \mu\sigma_2 < c_1(n, r)(\epsilon\gamma^{-1})^{2/n}$$

В случае 2) сначала докажем теорему для n=2. Снова разделим множество $\sigma(f,\varepsilon)$ на два подмножества: $\sigma_3=\{z\in K_{z_0}(r):|f'(z)|>\rho_1\},\ \sigma_4=\{z\in K_{z_0}(r):|f'(z)|\leqslant \rho_1\},\ r$ де $\rho_1=(M\varepsilon\gamma)^{1/3}$. Тогда по лемме 3 при $z_1\in K_{z_0}(r),\delta=\min(r/2,\ r^2\rho_1/4M)$ в силу указанного свойства монотонности |f(z)| получим $\mu(\sigma_3\cap K_{z_1}(\delta))\leqslant 16\pi\,(\varepsilon\rho_1^{-1})^2$. Так как величины ρ_1 и M связаны неравенством $\rho_1< M$, то, учитывая, что количество N кругов вида $K_{z_1}(\delta)$ в исходном круге $K_{z_0}(r)$ оценивается величиной $N\leqslant c_3(r)\,M^2\rho_1^{-2}$, получим

$$\mu\sigma_{3}\leqslant \mathit{c}_{4}\left(\mathit{r}\right)(\epsilon\rho_{1}^{-1})^{2}\,\rho_{1}^{-2}\,\mathit{M}^{2}=\mathit{c}_{4}\left(\mathit{r}\right)(\mathit{M}\epsilon)^{2}\,\rho^{-4}.$$

Меру множества σ_4 оценим с помощью леммы 3, когда f''(z) играет такую же роль для f'(z), что и f'(z) для f(z). Тогда в силу указанного свойства монотонности |f'(z)| получим $\mu(\sigma_4 \cap K_{z_2}(\delta_2)) \leqslant 16\pi (\rho_1 \gamma^{-1})^2$, если $z_2 \in K_{z_0}(r)$, $\delta_2 = \min(r/2, r^2 \gamma/4M)$. Из условия на величины γ и M, как выше в случае 1) для множества σ_2 , получим $\mu\sigma_4 \leqslant c_5(r) (\rho_1 \gamma^{-1})^2$. Таким образом,

$$\mu\sigma(f, \epsilon) = \mu\sigma_3 + \mu\sigma_4 < c_6(r) (M\epsilon)^{2/3} \gamma^{-4/3}.$$

Далее рассуждаем по индукции. Пусть лемма верна для n=1. Множество $\sigma(f,\ \epsilon)$ разделим на два множества: $\sigma_{5}=\{z\in K_{z_{0}}/r):|f^{(n-1)}(z)|>\rho_{1}\},\ \sigma_{6}=\{z\in K_{z_{0}}(r):|f^{(n-1)}(z)|\leqslant \rho_{1}\},\ r$ де $\rho_{1}=(M\epsilon)^{1/(2n-1)}\cdot\gamma^{(2n-3)/(2n-1)}$. Тогда по индуктивному предположению имеем

$$\mu\sigma_{5} \leqslant c_{2}(n-1, r) (M\varepsilon)^{2/(2n-3)} \rho^{-4/(2n-3)}$$

Меру σ_6 оцениваем аналогично мере σ_4 в случае n=2 т. е. $\mu\sigma_6 \leqslant c_5(r) \times (\rho_1 \gamma^{-1})^2$. Следовательно, $\mu\sigma(f, \epsilon) = \mu\sigma_6 + \mu\sigma_5 < c_2(n, r) (M\epsilon)^{2/(2n-1)} \times \rho^{-4/(2n-1)}$. Лемма доказана.

 \bigcirc Лемма 5. (Бореля—Кантелли). Eсли A_n (n = 0, 1, ...) — $\pmb{\epsilon}$ есконеч-

ная последовательность измеримых множеств и ряд $\sum_{n=0}^{\infty} \mu A_n$ сходится, то мера тех х, которые попадают в бесконечно многие множества A_n , равна нулю.

Доказательство теоремы. Рассмотрим определитель $\Delta(z)$, введенный в лемме 1. Так как функции $f_i(z)$ ($1 \leqslant i \leqslant n$) — аналитические в $K_{z_0}(r)$, то $\Delta(z)$ — аналитическая функция в $K_{z_0}(r)$. Из свойства, что аналитическая функция обращается в нуль лишь на счетном множестве точек z, лежащих в области ее аналитичности, получаем: $|\Delta(z)| \neq 0$ почти всюду в $K_{z_0}(r)$. В силу метрических соображений, как в [2, c. 85— 87], замечаем, что теорему достаточно доказать для $z = x + iy \in K_0(1)$ и считать, что $|\Delta(z)| > \varepsilon$ для $z \in K_0(1)$, где $\varepsilon > 0$ как угодно мало.

$$F(z) = a_0 + a_1 f_1(z) + ... + a_n f_n(z).$$
 (4)

При фиксированном A рассмотрим одну из функций F(z). Пусть множество $\sigma(F)$ — множество тех $z\in K_0(1)$, для которых при взятой функции Fвыполняется

$$|F(z)| < A^{-w}. \tag{5}$$

Найдем $\mu\sigma(F)$. Возьмем $z_1\in\sigma(F)$. По лемме 1 существует j ($1\leqslant j\leqslant n$), что выполняется неравенство $|F^{(j)}(z_1)|>c_1$ (ϵ , f) A. Далее применяем леммы 3, 4, 2. Проверим условия леммы 4. Имеем

$$\gamma(A) = c_1(\varepsilon, \mathbf{f}) A, M(A) = A, \rho(A) = c_2(\varepsilon, \mathbf{f}) \times A^{(1-w(j-1))/j}, \rho_1(A) = c_1(\varepsilon, \mathbf{f}) A^{1-(w+1)/(2j-1)}, w > 1.$$

Ясно, что для $j \geqslant 2$ выполняются условия случая 2). Следовательно, имеем

$$\mu\sigma(F) < c_2(j, r) (A^{1-w})^{2/(2j-1)} (c_1(\varepsilon, f) A)^{-4/(2j-1)} =$$

$$= c_3(j, r, \varepsilon, f) A^{-(w+2)/(2j-1)} \text{ для } j \ge 2,$$

$$\mu\sigma(F) < c_4(r) A^{-2(w-1)} \text{ для } j = 1.$$

Наихудшая оценка получается при j=n. Поэтому $\mu\sigma(F) < nc_5(n, \varepsilon, r, \mathbf{f}) A^{-(w+2)/(2n-1)}$, где $c_5(n, \varepsilon, r, \mathbf{f}) = \max_{0 \le j \le n} (c_3(j, \varepsilon, r, \mathbf{f}, c_4(r)))$. Поскольку при фиксированном A число функций F(z) вида (4), удовлетворяющих (5), не более чем $(A+1)^n$, то суммарная мера всех $\mu\sigma(F)$ не превосходит

$$C_6(n, \epsilon, r, f) \sum_{A=1}^{\infty} A^{n-(w+2)/(2n-1)}$$
.

Так как полученный ряд сходится при $w>2n^2+n-3$, то лемма Бореля—Кантелли завершает доказательство теоремы.

Авторы выражают искреннюю благодарность проф. В. И. Бернику

за постановку задачи и обсуждение.

Summary

New metric characteristic for the approximations of the points on the smooth curve in Cⁿ by the vectors with the integer Gauss'es coordinates is received.

Литература

1. Пяртли А. С. // Функц. анализ и его приложение. 1969. Т. 3, вып. 4. С. 59—62. Спринджук В. Г. Метрическая теория диофантовых приближений. М., 1977. 3. Бериик В. И. // Докл. АН БССР. 1989. Т. 33, № 8. С. 681—683.

4. Baker A. Transcendental Number Theory. Camb. Univ. Press, 1975. 5. Пташник Б. И. Некорректные граничные задачи дифференциальных уравнений с частными производными. Киев, 1984.

6. Ковалевская Э. И. Экстремальные многообразия размерности 3 в R⁶. Минск,

1989 (Препринт / АН БССР. Ин-т математики; № 27 (377)). 7. Ковалевская Э. И. // Весці АН БССР. Сер. фіз.-мат. навук. 1991. № 6.

Институт математики АН Беларуси, Белорусский государственный педагогический университет

Поступила в редакцию 22.03.93