О РАСПРЕДЕЛЕНИИ АЛГЕБРАЙЧЕСКИХ ЧИСЕЛ ВТОРОЙ И ТРЕТЬЕЙ СТЕПЕНИ

В работе получены двухсторонние оценки для расстояний между сопряженными алгебраическими числами второй и третьей степени. Эти оценки выводятся из некоторых точных теорем метрической теории диофантовых приближений [1-5].

В теории диофантовых приближений важны результаты о распределении рациональных чисел. В данной работе изучается распределение

алгебраических чисел второй и третьей степени. Доказаны нижние и верхние оценки для расстояний между квадратичными иррациональностями, алгебраическими и целыми алгебраическими числами третьей степени. Основу доказательства составляют метрические теоремы о разрешимости систем диофантовых неравенств в целочисленных полиномах для множеств точек из произвольного интервала положительной плотности.

Пусть $P_2(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$ квадратный трехчлен с целыми коэффициентами, имеющий иррациональные корни. Это означает, что его дискриминант не является квадратом целого числа, в противном случае корни будут рациональными числами.

Обозначим $H=H(P)=\max_{0\le j\le 2}|a_j|$ и пусть $x\in I\subset [-\frac{1}{2}]$. При лю-

бом целом Q>1 существует многочлен $P_2(x)$, $H(P)\leq Q$, что для $\forall x\in I$ выполняется неравенство

$$\left|P_{2}\left(x\right)\right| < Q^{-2}.\tag{1}$$

Обозначим через α_1 и α_2 корни $P_2(x)$ Пусть в (1) для заданного x корень α_1 — ближайший к x.

В работе будут доказаны следующие теоремы:

Теорема 1. Существует постоянная c_1 такая, что для любых корней α_1 и α_2 полинома $P_2(x)$ выполняется неравенство

$$\left|\alpha_{1}-\alpha_{2}\right|>c_{1}H\left(\alpha_{1}\right)^{-1}.$$
(2)

При некоторой эффективно вычисляемой величине $c_2(n)$ можно построить бесконечно много полиномов $P_2(x)$, для которых

$$\left|\alpha_{1} - \alpha_{2}\right| > c_{2}H\left(\alpha_{1}\right)^{-1}.\tag{3}$$

Теорема 2. При некоторых эффективно вычисляемых величинах c_3 и c_4 теорема 1 справедлива для многочленов третьей степени, если неравенство (2) заменить на неравенство

$$|\alpha_1 - \alpha_2| > c_3 H(\alpha_1)^{-2}$$
,

а перавенство (3) на неравенство

$$\left|\alpha_{1}-\alpha_{2}\right|>c_{4}H\left(\alpha_{1}\right)^{-\frac{4}{3}}$$

Теорема 3. Неравенства типа (2) и (3) справедливы для целых алгебраических чисел. При этом неравенства принимают вид

$$\left|\alpha_{1}-\alpha_{2}\right|>c_{5}H\left(\alpha\right)^{-2}$$

$$\left|\alpha_{1}-\alpha_{2}\right| < c_{6}H\left(\alpha\right)^{-1}.$$

Основу доказательства всех трех теорем составляет следующая теорема, которую мы докажем для многочленов третьей степени

Теорема 4. Обозначим через $M_3(Q)$ множество точек $x \in I$, для которых справедлива система неравенств

$$|P(x)| < c_7 Q^{-3}, |P'(x)| < c_8 Q,$$
 (4)

Тогда при $c_7 c_9 < 2^{-12}$ выполняется неравенство

$$\mu M_3(Q) < 0.5(b-a),$$
 (5)

Вначале перейдем от произвольных целочисленных многочленов в (4) к неприводимым многочленам с условием

$$|a_3| > c_9 H. \tag{6}$$

Это делается аналогично как в [3].

Обозначим через $\mathfrak{R}_3(Q)$ множество неприводимых многочленов P(t)с условием (6) и $H(P) \leq Q$, а через $\Re_3(H)$ множество неприводимых многочленов высоты H с условием (6). Относительно α_1 произведем упорядочение остальных корней

$$\left|\alpha_{1}-\alpha_{2}\right| \leq \left|\alpha_{1}-\alpha_{3}\right|. \tag{7}$$

Введем множество

$$S(\alpha_1) = \left\{ x \in I : \left| x - \alpha_1 \right| = \min \left| x - \alpha_1 \right| \right\}$$

Далее будем рассматривать систему неравенств (4) при $x \in S(\alpha_1)$. При достаточно малом $\varepsilon > 0$ введем $\varepsilon_1 = \varepsilon N^{-1}$, где N = N(n) > 0 достаточно большое число и пусть $T = \left[\varepsilon_1^{-1} \right]$. Определим числа p_j , j=2,3 из условия

$$\left|\alpha_{1}-\alpha_{J}\right|=H^{-\rho_{J}}.$$
 (8)

В силу (7) $\rho_3 \le \rho_2$. Лемма 1. Пусть справедливо неравенство (6). Тогда для любого j, $1 \le j \le 3$ выполняется неравенство $|a_j| < c_{10}$.

Пемма 2. Пусть $P(x) \in \mathfrak{R}_{_3}(H)$ и $x \in S(lpha_{_1})$. Тогда

$$|x - \alpha_{1}| \leq 3 |P(x)| |P'(x)|^{-1},$$

$$|x - \alpha_{1}| \leq 4 |P(x)| |P'(\alpha_{1})|^{-1},$$

$$|x - \alpha_{1}| \leq 3 \min \left(2^{n-j} |P(x)| |P'(x)|^{-1} \prod_{k=2}^{j} |\alpha_{1} - \alpha_{k}| \right)^{\frac{N_{j}}{2}}$$
(9)

Так как корни α_j ограничены, то из (7) и (9) получаем $p_j > -\frac{1}{2}$. Определим целые числа l_{j} , $2 \le j \le 3$ из неравенств

$$\frac{l_j-1}{T} \leq \rho_j < \frac{l_j}{T} \ , \ l_3 \leq l_2$$

и положим $\rho_1 = (l_2 + l_3)T^{-1}$.

Нетрудно доказать [3], что число векторов $\bar{l}=(l_2,\dots,l_n)$ для многочленов $P(t)\in\bigcup_{H=1}^\infty\Re_3(H)$ конечно. Зафиксируем один из таких векторов и подкласс $\tilde{\Re}_3(H)$ с фиксированным вектором \bar{l} обозначим через $\bar{\Re}_3(H,\bar{l})$.

Лемма 3 [4]. Пусть $P(t) \in \mathfrak{R}_3(H,l)$. Тогда при любом k , $1 \le k \le n$ выполняется неравенство $\left|P^{(l)}(\alpha_1)\right| < c(n)H^{1-\rho_k+(n-1)\varepsilon_1}$

Лемма 4 [5]. Пусть P_1 и P_2 два целочисленных многочлена степени не большей n и $\max \left(H\left(P_1\right),H\left(P_2\right)\right) \leq K$, для которых неравенство

$$\max(|P_1(x)|, |P_2(x)|) < K^{-\tau}$$

выполняется при всех $x \in I$, $\mu I = K^{-\eta}$, $\eta > 0$. Тогда при любом $\delta > 0$ и $K > K_0(\delta)$ справедливо неравенство

$$\tau + 1 + 2\max(\tau + 1 - \eta, 0) < 2n + \delta.$$

Доказательство теоремы С

Рассмотрим частный случай системы неравенств (4)

$$|P(x)| < c_7 Q^{-3}, c_6 Q^{\nu} < |P'(x)| < c_8 Q, \nu > \frac{1}{2}.$$
 (10)

Множество решений (10) обозначим $M_{3-1}(c,Q)$. Используя *лемму 2*, можно доказать, что множество решений неравенства (1) содержится в интервале

$$\sigma(P): \left\{ x \in I : |x - \alpha_1| < 6c_7 \ Q^{-3} |P'(\alpha_1)|^{-1} \right\}. \tag{11}$$

При некотором c_{11} введем интервал

$$\sigma_1(P): \left\{ x \in I: \left| x - \alpha_1 \right| < c_{11} \left| P'(\alpha_1) \right|^{-1} \right\}.$$
 12)

Из (11) и (12) следует, что

$$\mu \sigma_1(P) < 6c_7 c_{11} Q^{-3}$$
. (13)

Для $x \in \sigma_{\text{\tiny I}}(P)$ разложим многочлен P(x) в ряд Тейлора в окрестности корня $\alpha_{\text{\tiny J}}$

$$P(x) = P(\alpha_1) + P'(\alpha_1)(x - \alpha_1) + \frac{1}{2}P''(\alpha_1)(x - \alpha_1)^2 + \frac{1}{6}P'''(\alpha_1)(x - \alpha_1)^3.$$
 (14)

Так как $P(\alpha_1) = 0$, а по (10),(12) и (14) при большом Q

$$\left|P'(\alpha_1)(x-\alpha_1)\right| < c_{11}$$

$$\left|P^{(j)}(\alpha_1)(x-\alpha_1)^j\right| < cQQ^{-2\nu} < \frac{c_{11}}{3}.$$

то для всех $x \in \sigma_1(P)$ справедливо неравенство

 $|P(x)| < 2 c_{11}. \tag{15}$

Зафиксируем вектор \bar{b} . Множество многочленов $P(t) \in \mathfrak{R}_3 \left(H, i \right)$ с одним и тем же вектором \bar{b} обозначим через $\mathfrak{R}(\bar{b})$. Покажем, что при $c_{11} = 0,25$ интервалы $\sigma_1(P_1)$ и $\sigma_2(P_2)$, $P_1,P_2 \in \mathfrak{R}_3 \left(H,i \right) \cap \mathfrak{R}(\bar{b})$ не пересекаются. Предположим противное. Пусть $\sigma_2 = (P_1,P_2) = \sigma_1(P_1) \cap \sigma_1(P_2) \neq 0$. Тогда при $x \in \sigma_2 \left(P_1, P_2 \right)$ из (15) получаем

$$|P_2(x) - P_1(x)| < 4c_{11} = 1.$$
 (16)

У многочленов $P_1(x)$ и $P_2(x)$ совпадают все коэффициенты, кроме свободного члена. Поэтому их разность есть некоторое целое число, отличное от нуля. Неравенство (16) привело к противоречию.

Предположим сейчас, что множество значений многочлена $P'(x)-a_1=3a_2x^2+2a_2x$ для $x\in I$ и некотором $a_{l_0}=a_1$ принадлежит интервалу $[-c_8Q,c_8Q]$. Тогда если $a_1< a_{l_0}-2c_8Q$ и $a_1>a_{l_0}+2c_8Q$, то получим $|P'(x)|>c_8Q$. Таким образом, при фиксированном векторе $b_1=(b_3,b_2)$ коэффициент a_1 многочлена P(x) может принимать не более $4c_8Q$ значений. Число различных векторов b_1 не превосходит $(2Q+1)^2$, что при $Q>Q_0$ не превосходит 2^3Q^2 . Число же векторов b с учетом диапазона множества значений не превосходит $2^5c_8Q^3$. Мы показали, что при $c_{11}=0,25$ интервалы $\sigma_1(P)$ не пересекаются, поэтому

$$\sum_{P=\Re(\delta)} \mu \sigma_1(P) < |I|. \tag{17}$$

Из (17) и (13) получаем

$$\sum \mu \sigma(P) < 6 \cdot 2^{3} c_{7} Q^{-3} |I|. \tag{18}$$

 $P = \Re(\delta)$

Просуммируем оценку (18) по всем $\bar{b} \in \Re(\bar{b})$ с учетом числа значений a_1

$$\sum \mu \sigma(P) < 6 \cdot 2^8 c_8 |I|. \tag{19}$$

$$b = \Re(\delta), P = \Re(\delta),$$

При $c_7 c_8 < 2^{-12}$ получаем, что

$$\mu M_{3,1}(\vec{c}, Q) < \frac{1}{4}|I|$$
 (20)

Если множество значений многочлена $P'(x)-a_{1_0}$ не попадает в интервал $[-c_8Q,c_8Q]$, то представим интервал $I=\bigcup_{j\ge 1}I_j$ таким образом, чтобы множество значений $P'(x)-a_1$ содержалось в некотором интервале дяины $2c_8Q$. Для каждого из интервалов I_j суммирование по j приведет к (20).

Дальнейшее доказательство зависит от структуры вектора у и вели-

чины $l_2T^{-1} + p_1$.

Утверждение 1. Обозначим через $M_{3,2}(\overline{c},Q)$ множество $x \in I$, для которых выполняется система неравенств (4) и

$$l_2 T^{-1} + p_1 > 4 - \varepsilon. \tag{21}$$

Тогда

$$\mu M_{3,2}(\bar{c},Q) = \frac{1}{16}|I|.$$
 (22)

Доказательство. Из второго неравенства (9) при j=2 получаем

 $|x-\alpha_1|<< Q^{-\frac{p_2}{2}+2\varepsilon_1}. \tag{23}$ Поделим интервал I на равные интервалы I_j , $|I_j|=Q^{-\mu_1}$, $\mu_1=\frac{p_2-\varepsilon}{p_2-\varepsilon}.$ Число таких интервалов не превосходит $|I|Q^{\mu_1}$. Рассмотрим вначале те интервалы I_j , в которых система неравенств (4) либо имеет решение, либо существует только один полином $P(x)\in P_3(Q,I)$, для которого при $x\in I$ неравенство (4) имеет решение. Тогда число всех полиномов не превосходит $|I|Q^{\mu_1}$. Просуммируем оценку (23) по всем интервалам I_j . Получим оденку

$$cQ^{-2+\frac{p}{2}+2\varepsilon^{-\frac{3-p_2}{2}-\frac{\varepsilon}{2}}}|I|<\frac{1}{16}|I|.$$

при достаточно большом Q. Покажем, что при $x \in I_j$ неравенство (5) не может быть разрешимо при двух полиномах. Предположим противное и $P_1(x)$, $P_2(x)$ такие полиномы. Они неприводимы. Разложим их на интервале I_j в ряд Тейлора и оценим все слагаемые сверху. Получаем

$$|P_1(x)| \ll Q^{-3+1-\frac{1}{4}} = Q^{-2-\frac{1}{4}}.$$
 (24)

Ясно, что такую же оценку (24) получим и для $P_2(x)$. Воспользуемся леммой 4. Здесь $\tau+1=3+\frac{\varepsilon}{4},\ \eta=\mu_1,\ 2\big(\tau+1-\eta\big)=6+\frac{\varepsilon}{2}+p_2+\varepsilon=p_2+\frac{3}{2}\varepsilon$.

Применив лемму, получим

$$6+2\varepsilon+p_2<6+\delta$$
,

что при $\delta < 2\varepsilon$ противоречиво, носкольку $p_2 \geq 0$.

Утверждение 2. Обозначим через $M_{3,3}(\vec{c},Q)$ множество $x \in I$, для которых выполняется система неравенств (4) и

$$3,1 < l_2 T^{-1} + p_1 \le 4 - \varepsilon$$
.

Тогда

$$M_{3,3}\left(\overline{c},Q\right) < \frac{1}{16}|I|.$$
 (25)

Доказательство утверждения проводится аналогично доказательству *утверждения* 1 с заменой третьей оценки в (9) на вторую оценку.

Другие три диапазона изменения величины $l_2T^{-1}+p_1$ рассмотрены в [5], где показано, что мера тех $x \in I$, для которых выполняется неравенство (4) не превосходит $\frac{1}{6}|I|$. Суммируя эту оценку с (20), (22) и (25), получаем утверждение теоремы 4.

Покажем теперь, как из *теоремы 4* могут быть получены *теоремы 1-3*. Остановимся на *теореме 2*. Дискриминант многочлена третьей степени равен

$$D(P) = a_3^4 (\alpha_1 - \alpha_2)^2 (\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_3)^2$$
.

Для неприводимых многочленов $D(P_3) \neq 0$, а поскольку это целое число, то $|D(P_3)| \geq 1$. Из леммы 1 следует, что $|(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3)| < c_{12}$. Поэтому

$$1 \le \sqrt{|D(P_3)|} \le H^2 |\alpha_1 - \alpha_2| c_{12}$$

Отсюда следует первое утверждение *теоремы* 2. Для доказательства второго неравенства в *теореме* 2 в каждой точке $x \in B_2 = I \setminus B_1$, $\mu B_2 > \frac{1}{2} |I|$, постро-им многочлен $P_1(x)$, такой что $|P_1(x_1)| < Q^{-\nu_1}$, $|P'(x)| > 2^{-12} Q^{-\nu_2}$, $\nu_1 + \nu_2 = 2$.

По второму неравенству леммы 2 получаем $|x_1-\alpha_1| < 2^{14} \mathcal{Q}^{-\nu_1+\nu_2}$. Из разложения P'(x) по формуле Лагранжа в окрестности α_1 получим, что P'(x) и $P'(\alpha_1)$ при условии $\nu_2 \leq \frac{1}{3}$ имеют одинаковый порядок, поэтому из равенства $|P'(x)| = |a_3| |\alpha_1 - \alpha_2| |\alpha_1 - \alpha_3|$ получаем $|P'(\alpha_1)| < c_{13}H^{-3}$ и, после деления на $|a_3| > c_{10}H$ второе неравенство в теореме 2. Теоремы 1 и 3 локазываются аналогично.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. *Гельфонд, А.О.* Трансцендентные и алгебранческие числа / А.О. Гельфонд – М.: Гостехиздат, 1952. – 224 с.

2. Галочкин, А.И. Введение в теорию чисел У Ю.В. Нестеренко, А.Б Шид-

ловский. - М.: Изд-во Московского университета, 1984.

3. *Спринджук, В.Г.* Проблема Малера в метрической теории чисел / В.Г. Спринджук. – Минск : Наука и техника, 1967. – 184 с.

4. *Берник, В.И.* Совместные приближения нуля значениями целочисленных многочленов / В.И. Берник Изв. АН СССР. Сер. физ.-мат. – 1980. –

T. 44. - № 1. - C. 24-45.

5. *Берник, В.И.* О точном порядке приближения нуля значениями целочисленных многочленов / В.И. Берник // Acta Arithmetica. — 1989. — Т 53 — № 1. — С. 17-28.

Поступила в редакцию 06.07.2010 г.