

Управление образования Могилевского областного исполнительного комитета

Учреждение образования «Могилевский государственный областной институт развития образования»

И.В. Калачева

Использование методов математической статистики в работе специалистов социально-педагогической и психологической службы учреждений образования

Практическое пособие
Зпактронный архи

Могилев УО «МГОИРО» 2015 УДК 519.22:37.013.42:159.9(075.8) ББК 22.172+74.6+88.5 К 17

Печатается по решению Научно-методического совета УО «МГОИРО»

Рецензенты:

кандидат психологических наук, доцент кафедры педагогики и психологии УО «Могилевский государственный областной институт развития образования» В. В. Авраменко;

педагог-психолог ГУО «УПК ясли-сад-средняя школа агрогородка Одельск» Гродненского района, магистр психологии Л. А. Данилевич кандидат педагогических наук, доцент кафедры дидактики и частных методик учреждения образования «Могилевский государственный областной институт развития образования» В.Н. Гирина

Калачева И. В.

К 17 Использование методов математической статистики в работе специалистов социально-педагогической и психологической службы учреждений образования : практическое пособие / И. В. Калачева. — Могилев: УО «МГОИРО», 2015. — 93 с. ISBN 978-985-90362-1-7

УДК 519.22:37.013.42:159.9(075.8) ББК 22.172+74.6+88.5

Предлагаемое пособие является практическим руководством по организации выборочного исследования, анализу и интерпретации эмпирических данных с помощью статистических методов, наиболее часто используемых в психолого-педагогических исследованиях. Представленные методы даны в виде логически упорядоченной системы с ориентацией на специалиста, не имеющего специальной математической подготовки. Применение каждого метода иллюстрируется на простых примерах и сопровождается пошаговыми алгоритмами вычислений.

Пособие предназначено для психологов, педагогов, а также всех специалистов, которым в практической деятельности приходится решать исследовательские задачи.

ISBN 978-985-90362-1-7

 Учреждение образования «Могилевский областной институт развития образования», 2015

ВВЕДЕНИЕ

В соответствии с Положением о социально-педагогической и психологической службе учреждения образования (далее – СППС) важнейшими функциями специалистов службы являются изучение уровня воспитанников. обучающихся их индивидуальных особенностей и склонностей, психолого-педагогическое сопровождение процесса обучения учащихся и воспитанников, участие в мониторинге качества учебно-воспитательного процесса и т.д. [1]. Реализация этих функций предполагает наличие у специалистов СППС умений проводить психолого-педагогические исследования, обрабатывать полученные помощью научно-обоснованных метолов. эмпирические данные с интерпретацию полученных показателей. Для этого осуществлять специалистам необходимо знание основ дисциплины «Статистические методы в психологии» - отрасли знаний, которая возникла на стыке математической и психологической науки. Благодаря проникновению математического аппарата психологию последняя получила возможность количественно описывать сравнивать изучаемые обобшенном психологические явления. виде описывать повышать закономерности, доказательность выводов эмпирических исследований, сопроводив их результатами статистического анализа. В связи с этим использование статистических методов является важным практической деятельности специалистов элементом социальнопедагогической и психологической службы учреждений образования, компонентом культуры проведения психологического и педагогического исследования. Вместе с тем, применение математических методов часто вызывает у специалистов социальной сферы существенные затруднения и даже сомнения в необходимости их использования.

Предлагаемое пособие является практическим руководством по организации исследования, анализу и интерпретации эмпирических данных. Оно содержит пошаговые алгоритмы реализации статистических методов, наиболее часто используемых В психологических и . педагогических исследованиях. При изложении математические формулы даются без доказательства и иллюстрируются на конкретных примерах. Применение предлагаемых методов позволит специалистам СППС формировать выборку исследования, представлять его результаты в виде таблиц и графиков, выбирать адекватные решаемым задачам методы статистической обработки, находить существенные различия между группами испытуемых, устанавливать взаимосвязь между изучаемыми признаками, выявлять достоверность сдвигов исследуемых психологических переменных, делать научно-обоснованные выводы о выявленных закономерностях. Для формирования навыка применения статистических методов обработки эмпирических данных в пособии представлены задания для самостоятельной работы и ответы к ним.

Пособие предназначено для психологов, педагогов, а также всех специалистов, которым в практической деятельности приходится решать исследовательские задачи.

ТЕМА 1. ОСНОВЫ ИЗМЕРЕНИЯ В ПСИХОЛОГИИ

1. Понятие о математической статистике и ее методах

Математическая статистика (от итальянского «statio» — государство) — раздел математики, который изучает методы сбора, систематизации, обработки и использования статистических данных для получения научных и практических выводов.

Первая задача математической статистики — определить способы сбора и группировки статистических данных.

Вторая задача математической статистики состоит в разработке методов анализа статистических данных в зависимости от целей исследования [4].

Статистические данные — это совокупность чисел, полученных эмпирическим лутем, представляющая собой количественные признаки изучаемых объектов. Эти данные получают в результате специально организованных исследований, в том числе психолого-педагогических.

Математическая статистика включает три раздела [4]:

- 1) описатиельная статистика занимается описанием, систематизацией графическим представлением и табулированием данных, полученных в ходе исследования, а также выявлением центральных тенденций распределения и оценки разброса данных;
- 2) индуктивная статистика (теория статистического вывода) занимается проверкой того, можно ли результаты, полученные на ограниченной совокупности объектов распространить на всю совокупность объектов данного вида. Базируется на описательной статистике;
- 3) коррелятивная статистика разрабатывает статистические методы для обнаружения и проверки взаимосвязи между изучаемыми показателями.

Методы статистической обработки — это способы количественных расчетов, математические формулы и приемы, которые позволяют обобщать эмпирические данные, выявляя скрытые в них закономерности. Они подразделяются на первичные и вторичные [3, 19].

Первичными методами статистической обработки называют методы, с помощью которых получают показатели, непосредственно отражающие результаты эмпирических исследований: наглядное представление данных в виде графиков и диаграмм, вычисление мер центральной тенденции (среднего значения, моды, медианы), мер изменчивости (размаха, дисперсии, стандартного отклонения).

Вторичными называют методы статистической обработки, которые пспользуя первичные данные, позволяют выявить скрытые статистические пкономерности, произвести качественный анализ данных: выдвижение

статистических гипотез, подготовка данных ДЛЯ применения статистических метолов (например, проверка нормальности распределения), проверка гипотез с помощью статистических критериев, формулирование выводов и т.д.

Использование математико-статистического анализа эмпирических данных позволяет [9, 13]:

- HOBO 1) более четко и лаконично описывать изучаемые объекты, обобщать данные исследования:
- 2) выявлять наличие существенных различий между группами. количественно сравнивая исследуемые признаки;
 - 3) устанавливать скрытые причины и суть психологических явлений;
- 4) повышать доказательность выводов, сопроводив их статистическим подтверждением.

2. Признаки и переменные в психологии

В процессе проведения психологического исследования проводятся различные измерения. В качестве объектов измерения выступают психические процессы, особенности свойства индивидов. Измеряемые психологические явления обозначаются понятиями «признак» «переменная». В качестве переменной могут выступать скорость выполнения теста, социометрический статус, количество допущенных ошибок и т.д. В случае, когда необходимо указать степень выраженности признака, вместо этих понятий используют термины «показатель» или «уровень». Это означает, что признак может быть измерен количественно с такими определениями как низкий, средний, высокий. Например, высокий уровень интеллекта, низкий уровень тревожности и т.д. [27].

Переменная — это любая реальность, которая может быть подвергнута Психологические переменные являются величинами, поскольку заранее неизвестно, какие значения они примут [8].

В психологии рассматривают следующие виды переменных [8, 11]:

1) количественные качес**т**венные переменные. качественных переменных различия между признаками выражаются в каких-либо качествах (например, мужской или женский пол), а в случае количественных - различия выражаются количественно (например, коэффициент интеллектуальности IQ=115 или IQ=100).

Количественные переменные могут быть двух видов: дискретные и непрерывные.

Дискретной (прерывистой) называется переменная, принимающая значения, которые выражаются числами, между которыми нет, и не может быть переходов. Например, оценки, полученные учащимися на экзамене.

Непрерывной называется переменная, которая может принимать все значения из некоторого числового промежутка. Например, средний балл успеваемости школьников за четверть, время реакции испытуемых и т.д.

2) независимые и зависимые переменные. Независимой является

переменная, которую экспериментатор может изменять по своему замыслу; она отражает причину. Зависимая переменная — это та переменная, которая изменяет свои значения под воздействием независимой; она является следствием. Зависимая переменная является тем признаком, который измеряется экспериментатором.

Например, исследуются особенности нейротизма у подростов разного пола. Независимой переменной будет пол (мальчики или девочки), а зависимой — нейротизм. Изучается эффективность поощрения по отношению к личности учащегося: независимой переменной будет поощрение (его разные формы), а изменения в личности учащегося (н-р, самооценка) — зависимой [11].

3. Психологические измерения и их виды

изучения психологии начинались с раздражителей (острота получаемых различных цветоразличение), при этом использовали физический подход. Измерение рассматривалось как совокупность действий, выполняемых с помощью измерительных средств, для получения числового значения измеряемой величины в принятых единицах измерения [28]. Но когда исследователи измерению более сложных психических (интеллекта, способностей), то от физической трактовки измерения отказались (например, что считать величиной интеллекта и единицей его измерения).

Психологическую трактовку измерения предложил С. Стивенс: измерение — это приписывание чисел объектам в соответствии с определенными правилами [28]. Например, измерить рост — это приписать число расстоянию между макушкой и подошвой ног, найденному с помощью линейки; измерить интеллект — это найти коэффициент интеллектуальности путем присвоения числа ответной реакции человека, возникающей у него на группу типовых задач. Т.е. измерение преобразует свойства наших восприятий в числа, которые легко поддаются обработке. Такая трактовка измерения позволяет осуществлять измерения не только в психологии, но и в экономике, социологии и т.д., а физические измерения рассматривать как частный случай измерений.

Измерение в психологии связано с количественной оценкой свойств объектов. В основе измерения лежит операция сравнения. Особенности психологического измерения позволяют выделить три его вида: нормативное, критериальное и ипсативное [31].

Нормативное измерение - это сравнение значений показателей испытуемого со значениями распределения аналогичных показателей в эталонной группе Для этого результаты индивидуального лиц. тестирования включают В систему соотносительных разработанных на большой группе испытуемых, определяя относительный статус испытуемого. Нормативное измерение наиболее общепринято. Примером такого измерения является измерение коэффициента интеллектуальности IQ.

Критериальное измерение основано на прямой оценке качества выполнения теста испытуемым без сравнения с показателями других людей. Оценка результатов испытуемого состоит в их сравнении с установленным экспертным или эмпирическим путем стандартом выполнения задания, определенным объективным уровнем развития качества. Критериальное измерение предполагает определение не относительного, а абсолютного статуса испытуемого, оцениваемого по направлено оценку компетентности теста. Оно на обследуемого в четко определенной области, а не на измерение каких-либо абстрактных свойств. Этот вид измерения наиболее часто используется в педагогической практике для оценки знаний, умений и навыков обучающихся.

Ипсативное измерение ориентировано на оценку внутрииндивидуальных соотношений и не связано с изучением различий между индивидами. При этом значение показателей сравнивается не с групповой, а с индивидуальной нормой. Примером такого измерения может служить сравнение величин физиологических показателей испытуемого в различных ситуациях с нормой, характерной для него: например, сравнение частоты пульса человека после нагрузки с частотой, характерной для него в состоянии покоя.

Для формализации процесса измерения используются специальные символы, операции и условные обозначения, которые будут рассмотрены далее.

4. Измерительные шкалы и их характеристика

Большое значение при обработке данных приобретает выбор шкал измерения психологических переменных.

Шкала измерения — это форма фиксации совокупности признаков изучаемого объекта с упорядочиванием их в определенную числовую систему. С. Стивенсом предложена классификация из четырех типов измерительных шкал. Рассмотрим ее подробнее [18,27]:

1) номинальная шкала или шкала наименований. Это шкала, которая классифицирует объекты по названию. Название не измеряет объект количественно, а лишь позволяет отделить один объект от другого. Например, участники международных соревнований могут быть расклассифицированы как русские, немцы, белорусы и т.д.

Если объект может быть отнесен только к одному из двух классов, то такая шкала называется *номинальной дихотомической*, а признак называется альтернативным. Например, классификация по полу (мужскойженский).

В номинальной шкале признак может быть отнесен и к трем, и к четырем, и более классам, которые не должны пересекаться.

Расклассифицировав все объекты измерений, мы можем от наименований перейти к числам, подсчитав количество наблюдений в каждом классе (т.е. частоту встречаемости признака) и работать с частотами с помощью математических методов.

2) ранговая (порядковая) шкала. Она используется для отнесения классу определенному В соответствии со степенью выраженности заданного свойства изучаемого объекта, (например, места спортсменов на соревновании). В ранговой шкале мы не знаем расстояния образуют упорядоченную классами, знаем, что они между но последовательность. От классов легко перейти к числам, если считать, что самый низкий класс получает ранг 1, следующий - ранг 2 и т.д., или наоборот, самый высокий класс получает ранг 1, следующий – ранг 2 и т.д.

При шкалировании с помощью порядковой шкалы в классификации должно быть не менее трех классов. Чем больше классов в шкале, тем больше возможностей имеется для математической обработки данных.

3) интервальная шкала обладает всеми свойствами ранговой шкалы, но в ней известны расстояния между классами. Классы объектов в шкале интервалов всегда упорядочены по возрастанию или убыванию измеряемого свойства. Каждое из возможных значений признака отстоит от другого на равном расстоянии. Например, оценки школьников на экзамене.

Интервальные шкалы позволяют количественно описывать различия между свойствами объектов. В них имеют смысл арифметические операции сложения, вычитания и можно определить, насколько один класс превосходит другой. Для задания этой шкалы устанавливают единицу измерения и произвольную точку отсчета. Примерами таких шкал в психологии являются шкала стенов, шкала Векслера и др.

4) шкала равных отношений. В этой шкале объекты классифицируют пропорционально степени выраженности измеряемого свойства. Классы обозначаются числами, пропорциональными друг другу. Это позволяет определить, во сколько раз один класс превосходит другой. Например, результаты (в секундах) бегунов на соревнованиях.

Для задания этой шкалы устанавливают единицу измерения и абсолютную точку отсчета, соответствующую полному отсутствию выраженности измеряемого свойства. В психологии примером измерений, проведенных в шкалах равных отношений, является измерение времени реакции и абсолютных порогов чувствительности.

Номинальная и ранговая шкалы являются качественными шкалами, а интервальная шкала и шкала равных отношений — количественными (метрическими) шкалами.

Эмпирические данные, полученные в одной шкале, можно перевести в другую, в следующем направлении: количественная шкала (результаты спортсменов на соревнованиях) переводится в порядковую шкалу (места

спортсменов на соревнованиях), а затем в номинальную шкалу (число представителей страны, участвующих в соревнованиях). Поэтому нужно стремиться проводить измерения в количественных шкалах, т.к. это позволяет перейти к качественным шкалам с частичной потерей информации. Такой переход от одной шкалы к другой называют переходом с понижением мощности шкалы [26]. Мощность шкалы — это ее дифференцирующая способность. Менее мощные шкалы отражают меньше информации о различии объектов по измеряемому свойству. По мере возрастания мощности шкалы располагаются следующим образом: номинальная, порядковая, интервальная, шкала равных отношений. Определение того, в какой шкале измерен признак, является ключевым моментом анализа данных исследования. В психологии чаще всего результаты представлены в порядковой шкале [18].

Перевод исходных данных из количественных шкал в порядковую шкалу называется *ранжированием*. Для ранжирования необходимо [9]:

- а) упорядочить исходные данные по возрастанию (убыванию);
- б) каждому значению присвоить ранг число, соответствующее порядковому номеру элемента в упорядоченной последовательности данных:
- если данные упорядочены по возрастанию, то ранг 1 присваивают наименьшему значению, если по убыванию – наибольшему;
- если значения признака совпадают, им присваивается один и тот же ранг, равный среднему арифметическому тех рангов, которые были бы им присвоены в случае их несовпадения. Эти ранги называются связанными рангами. Далее ранжирование производится так, как если бы ранги были разными.

Для проверки правильности вычисления рангов, вне зависимости от наличия или отсутствия связанных рангов, используется следующая формула:

$$\sum_{i=1}^n R_i = \frac{n(n+1)}{2},$$

где $\sum_{i=1}^{n} R_i$ – сумма рангов, n – количество ранжируемых значений.

Пример. Проранжировать следующий массив данных: 16, 24, 16, 14, 11, 28, 12, 36, 28, 22, 28.

Решение.

Упорядочим выборку по возрастанию:

11, 12, 14, 16, 16, 22, 24, 28, 28, 28, 36.

Определим *условные ранги* [10], присвоив порядковый номер каждому значению:

Значения	11	12	14	16	16	22	24	28	28	28	36
Условные ранги	1	2	3	4	5	6	7	8	9	10	11

Вычислим связанные ранги:

- для значения 16: (4+5):2=4,5;
- для значения 28: (8+9+10):3=27:3=9.

Присвоим ранги, учитывая наличие связанных рангов, исходным данным:

Значения	11	12	14	16	16	22	24	28	28	28	36
Условные ранги	1	2	3	4	5	6	7	8	9	10	11
Ранги	1	2	3	4,5	4,5	6	7	9	9	9	11

Проверим правильность ранжирования:

$$\sum_{i=1}^{n} R_i = 1 + 2 + 3 + 4,5 \times 2 + 6 + 7 + 9 \times 3 + 11 = 1 + 2 + 3 + 9 + 6 + 7 + 27 + 11 = 66.$$

По формуле для вычисления суммы рангов для n=11 получаем:

$$\sum_{i=1}^{n} R_i = n \times (n+1):2 = 11 \times (11+1):2 = 66.$$

Задания для самостоятельной работы ривести примеры измерений, представленных:

а) в номинальной шкале:

MY WIN

- 1. Привести примеры измерений, представленных:
 - а) в номинальной шкале;
 - б) в порядковой шкале;
 - в) в интервальной шкале;
 - г) в шкале равных отношений.
- 2. Определить, в какой шкале представлены приведенные ниже измерения. Ответ обосновать [13, 18, 21]:
 - а) классификация вкусовых качеств: сладкое горькое кислое;
 - б) классификация испытуемых по уровню интеллектуального развития: высокий уровень - средний уровень - низкий уровень;
 - в) температура, измеренная по шкале Цельсия: 0 °C, +5 °C, +10°C;
 - г) рост, измеренный в сантиметрах: 180 см 160 см 174 см;
 - д) пол испытуемых: мужской женский;
 - е) воинское звание как мера продвижения по службе: рядовой сержант - лейтенант - капитан;
 - ж) воинское звание как указание на принадлежность к определенной категории: рядовой – сержант – лейтенант – капитан.
 - з) классификация испытуемых по цвету волос: блондинка брюнетка рыжая;
 - и) классификация испытуемых по росту: высокий средний низкий;
 - к) температура, измеренная по шкале Кельвина: 0 К, +5 К, +10 К;
 - л) вес, измеренный в килограммах: 80 кг -60 кг -74 кг;
 - м) национальность испытуемых: русский белорус;
 - н) академический статус как мера продвижения по службе: ассистент доцент – профессор;
 - о) академический статус как указание на принадлежность к определенной категории: ассистент – доцент – профессор;
 - п) порядковый номер испытуемого в списке (для его идентификации);

- р) упорядочивание испытуемых по времени решения тестовой задачи;
- с) время решения задачи;
- т) телефонные номера;
- у) количество вопросов в анкете как мера трудоемкости опроса;
- ф) предпочтение домашних животных: собаки кошки хомячки никакие;
- х) ответы на вопросы анкеты: да нет затрудняюсь ответить;
- ц) ответы на вопросы анкеты: совершенно согласен скорее согласен, чем не согласен – скорее не согласен, чем согласен – совершенно не согласен;
- ч) количество агрессивных реакций за рабочий день;
- ш) количество агрессивных реакций за рабочий день как показатель агрессивности;
- щ) семейное положение: женат холост разведен;
- э) статус ученика в классе: звезда предпочитаемый принятый отверженный;
- ю) упорядочивание испытуемым по степени значимости восемнадцати инструментальных ценностей (методика Рокича);
- я) измерение времени сенсомоторной реакции испытуемых.
- 3. Проранжировать следующие массивы данных, используя принцип «меньшему значению меньший ранг». Проверить правильность ранжирования:
 - a) 15, 2, 11, 6, 9, 7, 8;
 - б) 2, 3, 5, 1, 4, 5, 6, 5, 2;
 - в) 4, 5, 9, 2, 6, 5, 9, 7, 5, 12;
 - r) 8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20.

Практическое задание.

Проранжировать учащихся класса по среднему балу успеваемости за последнюю четверть, используя принцип «большему значению – меньший ранг».

ТЕМА 2. ПЕРВИЧНОЕ ОПИСАНИЕ ЭМПИРИЧЕСКИХ ДАННЫХ

1. Понятие о генеральной совокупности и выборке

Генеральная совокупность – это совокупность всех мысленно возможных объектов интересующего исследователя типа, для которых могут быть проведены измерения при данном реальном комплексе условий. Генеральная совокупность является математически абстрактным понятием и содержит такое большое количество объектов, что практически изучить их невозможно. Поэтому реальное исследование проводится на выборочной совокупности [26].

Выборочная совокупность (выборка) — это совокупность случайно отобранных объектов из генеральной совокупности для изучения интересующего исследователя свойства [26].

Число элементов в выборке называют *объемом выборки* и обозначают n. Объем генеральной совокупности обозначают N.

Например, если из 1000 деталей отобрано для обследования 100 деталей, то N=1000, а n=100.

В зависимости от количества наблюдений выборочные совокупности подразделяются на три группы [18]:

- малые до 30 наблюдений;
- средние от 30 до 200 наблюдений;
- большие от 200 наблюдений и выше.

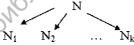
Объем выборки определяется теми задачами, которые стоят перед исследователем [18]:

- если разрабатывается диагностическая методика, то объем выборки может варьировать от 200 до 2000 наблюдений.
- если сравниваются две выборки, то сумма наблюдений в обеих выборках должна быть не менее 50: $n_1 + n_2 \ge 50$;
- если изучается взаимосвязь между свойствами, то количество наблюдений составляет примерно 30-35.
- чем больше изменчивость изучаемого свойства, тем больше должен быть объем выборки. Изменчивость свойства можно уменьшить, увеличив однородность выборки, например, по полу, возрасту, уровню образования и т.д.

Сущность статистических методов состоит в том, чтобы по результатам исследований, полученных на выборке, можно было судить о свойствах генеральной совокупности в целом. Достоверность выводов, получаемых в результате статистической обработки исходных данных, зависит от того, насколько выборка является репрезентативной (представительной).

Репрезентативной является выборка, элементы которой правильно представляют пропорции генеральной совокупности [7]. В этом случае выборка будет представлять изучаемое явление достаточно полно с точки

зрения его изменчивости в генеральной совокупности.


Выборка, на которой разрабатываются нормы выполнения теста, называется выборкой стандартизации. При формировании выборки стандартизации руководствуются следующими правилами: а) выборка должна состоять из респондентов, на которых ориентирован тест, и быть однородной; б) выборка должна иметь большой объем (свыше 200 наблюдений); в) выборка должна быть репрезентативной, для чего отбор испытуемых в выборку должен носить случайный характер [3].

2. Способы формирования выборки

Важнейшим условием повышения степени репрезентативности выборки является достижение полностью случайного отбора объектов из генеральной совокупности. Это означает, что все ее объекты имеют одинаковую вероятность попасть в выборку [7].

При отборе объектов из генеральной совокупности для получения выборки используются следующие способы [26]:

- 1) простой случайный отбор. Объекты генеральной совокупности, имеющей объем N, нумеруют от 1 до N. Затем, используя таблицу случайных чисел или процедуру жеребьевки (например, корзину с пронумерованными карточками), отбирают п объектов выборки;
- 2) простой отбор с помощью регулярной, но не существенной для изучаемого явления процедуры (например, отбор испытуемых по их номеру в списке);
- 3) стратифицированный (расслоенный). В этом случае генеральная совокупность объема N разделяется на непересекающиеся подсовокупности (страты, слои) N_1 , N_2 , ..., N_k .

Из каждого слоя извлекается простая случайная выборка, имеющая соответственно объем n_1, n_2, \ldots, n_k , причем $n_1 + n_2 + \ldots + n_k = n$.

Стратифицированный отбор применяется, когда объекты внутри каждого слоя являются однородными по изучаемому свойству. Например, все студенты вуза могут быть разделены на 5 страт — студенты 1 курса, 2 курса, 3 курса, 4 курса и 5 курса;

- 4) серийный (гнездовой) отбор. Он применяется, если удобно исследовать не отдельные элементы генеральной совокупности, а целые блоки или серии таких элементов. Например, исследуются все ученики одного класса или все семьи в одном доме;
- 5) комбинированный (ступенчатый). Он объединяет в себя несколько вышеперечисленных способов отбора, которые составляют различные ступени выборочного исследования.

Например, исследователю необходимо представить репрезентативную выборку первоклассников. Генеральной совокупностью являются все

учащиеся 1 класса нашей страны. Первый этап — простой случайный отбор: нумеруют области от 1 до 6 и с помощью жеребьевки определяют одну из них. Второй этап — простой отбор с помощью регулярной процедуры: в пределах области выбирают район, в названии которого содержится пять определенных букв. Третий этап — стратифицированный отбор: в районе делят все школы на городские, поселковые, сельские. Четвертый этап — в городе (поселке) используют серийный отбор: выбирают учащихся 1 класса определенной школы; они и составляют выборку, на которой будет проводиться исследование.

3. Распределение частот и табулирование данных.

Пусть из генеральной совокупности извлечена выборка объема п. Исследуется некий признак (например, уровень интеллекта, время реакции и т.д.). Тогда каждый элемент выборки может принимать различные значения исследуемого признака, которые обозначают $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$, где к \leq п. Значение признака называют вариантой \mathbf{x}_i , где \mathbf{i} — порядковый номер варианты.

Последовательность вариант, упорядоченная по возрастанию, называется вариационным рядом. Число появлений варианты x_i называют частотой варианты и обозначают n_i [7].

Например, в результате исследования получены следующие данные:

Представим их в виде вариационного ряда: 5, 5, 6, 7, 8, 8, 8.

Исследуемый признак принимает четыре значения $x_1 = 5$, $x_2 = 6$, $x_3 = 7$, $x_4 = 8$, которые имеют следующую частоту: $n_1 = 2$, $n_2 = 1$, $n_3 = 1$, $n_4 = 3$.

Сумма частот всех вариант равна объему выборки

$$n_1 + n_2 + \ldots + n_k = n$$
 или $\sum_{i=1}^k n_i = n$

Для предыдущего примера $n_1 + n_2 + ... + n_k = 2+1+1+3=7$; n = 7.

Отношение частоты варианты n_i к объему выборки n называется *относительной частотой* варианты и обозначается w_i : $w_{i=n_i}/n$ [7].

Сумма всех относительных частот равна 1:

$$w_1 + w_2 + ... + w_k = 1$$

Для предыдущего примера $w_1 + w_2 + ... + w_k = 2/7 + 1/7 + 1/7 + 3/7 = 7/7 = 1$.

Первичная обработка данных, полученных в результате измерения, заключается в их описании, упорядочении, табулировании и представлении в виде, удобном для дальнейшей обработки. Для этого выборку представляют в виде *статистического распределения*, которое может быть задано двумя способами [7]:

- а) в виде распределения частот (относительных частот) перечня вариант и соответствующих им частот (относительных частот);
- б) в виде интервального распределения (распределения сгруппированных частот) последовательности интервалов и соответствующих им частот (относительных частот).

Распределение частот, как правило, используется в случае, если измеряемая переменная является дискретной, а интервальное распределение – если переменная непрерывна.

Пример 1. В результате эмпирического исследования получены следующие данные: 1, 2, 1, 3, 5, 6, 7, 1, 2, 4, 5, 6, 3. Задать статистическое распределение выборки.

Решение. Определим объем выборки: n= 13.

Построим вариационный ряд: 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7.

Зададим статистическое распределение выборки в виде частот и относительных частот:

Xi	1	2	3	4	5	6	7
n_i	3	2	2	l	2	2	1
Wi	1/13	2/13	2/13	1/13	2/13	2/13	1/13

Контроль: 3+2+2+1+2+2+1=13;

3/13+2/13+2/13+1/13+2/13+2/13+1/13 = 13/13=1

Если исследуемая переменная принимает большое число различных значений, то удобнее использовать статистическое распределение в виде интервального распределения. Для этого производят *табулирование данных*, т.е. представляют исходную выборку в виде таблицы соответствующей структуры. Табулирование данных осуществляется в четыре этапа [13, 26]:

I этап — определение размаха выборки R. Для этого из максимального значения выборки вычитают минимальное: $R = x_{max} - x_{min}$;

 $2\$ $2\$

Ширина интервала группирования h получается путем деления размаха выборки на количество интервалов: $h = \frac{R}{L}$.

3 этап — определение границ частичных интервалов группирования данных. При этом левая граница первого интервала должна быть меньше либо равна x_{min} . Каждая последующая граница получается из предыдущей путем прибавления ширины интервала. Правая граница последнего интервала должна быть больше либо равна x_{max} :

Рис. 2.1 — Графическое представление границ частичных интервалов группирования данных

4 этап — непосредственно табулирование данных. При этом подсчитывается, сколько элементов выборки попало в каждый частичный интервал. Значения, попадающие точно на границу интервала, учитываются один раз. Результатом табулирования данных является таблица, состоящая из трех столбцов, первый из которых содержит границы частичных интервалов, второй — частоты, третий — относительные частоты. Можно включить в таблицу четвертый столбец для подсчета частот, используя метки.

Пример 2 [26]. В результате измерения скорости чтения в классе из 38 учеников были получены следующие результаты: 90, 66, 106, 84, 105, 83, 104, 82, 97, 97, 59, 95, 78, 70, 47, 95, 100, 69, 44, 80, 75, 75, 51, 109, 89, 58, 59, 72, 74, 75, 81, 71, 68, 112, 62, 91, 93, 84. Задать статистическое распределение выборки.

Решение. Воспользуемся интервальным распределением частот.

1) определим размах выборки:

 $x_{\text{max}} = 112$, $x_{\text{min}} = 44$, $R = x_{\text{max}} - x_{\text{min}} = 112 - 44 = 68$

2) определим ширину интервала группирования данных h:

n=38, k
$$\approx \sqrt{n} = \sqrt{38} \approx 6.2 \approx 7 \text{ h} = \frac{R}{k}$$
; h= 68:7 \approx 9.7 \approx 10.

Левую границу первого частичного интервала выбираем равной $x_{\text{max}} = 44$, все последующие границы получаем из предыдущей, прибавлением ширины интервала группирования h=10.

Границы частичных интервалов	Частота	Относительная частота	Подсчет
[44; 54)	3	3/38	///
[54; 64)	4	4/38	11/1
[64; 74)	6	6/38	111111
[74; 84)	9	9/38	////////
[84; 94)	6	6/38	111111
[94; 104)	5	5/38	11111
[104; 114)	5	5/38	11111
Сумма частот	38	1	

Для контроля правильности группирования нужно вычислить сумму частот, которая равна объему выборки.

Анализ интервального распределения позволяет сделать вывод, что основная часть учащихся (21 человек) читает со скоростью 64-94 слова в минуту. Но есть ученики (7 человек), которые читают с невысокой скоростью, а также школьники (10 человек) с высокой скоростью чтения.

4. Графическое представление эмпирических данных

Графическое представление результатов исследования позволяет проводить некоторое обобщение исходных данных.

Чаще всего используется два основных способа графического представления данных: полигон частот (относительных частот),

гистограмма частот, точечная диаграмма.

Полигоном частот (полигоном распределения) называют ломаную, отрезки которой соединяют точки $(x_1; n_1)$, $(x_2; n_2)$, ..., $(x_i; n_i)$. Для построения полигона частот на оси абсцисс откладывают варианты x_i , а на оси ординат — соответствующие им частоты n_i . Полученные точки $(x_i; n_i)$ соединяют отрезками. Полигон частот позволяет в графическом виде представить варьирование исследуемого признака [7].

Полигоном относительных частот называют ломаную, отрезки которой соединяют точки $(x_1; w_1), (x_2; w_2), \dots, (x_i; w_i)$. Для построения полигона относительных частот на оси абсцисс откладывают варианты x_i , а на оси ординат — соответствующие им частоты w_i . Полученные точки $(x_i; w_i)$ соединяют отрезками [7].

Пример 3. Построить полигон частот для данных из примера 1. Решение. Воспользуемся распределением частот, полученным в примере 1.

Γ	Xi	1	2	3	4	5	6_	7
Г	ni	3	2	2	1	2	2	1
Γ	Wi	1/13	2/13	2/13	1/13	2/13	2/13	1/13

Построим точки с координатами: (1;3), (2;2), (3;2), (4;1), (5;2), (6;2), (7;1) и соединим их отрезками.

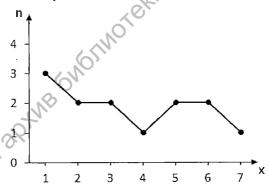


Рис. 2.2 – Полигон частот, построенный на основе статистического распределения эмпирических данных

Гистограммой частот (гистограммой) называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы шириной h, а высотой — частота n_i (или плотность частоты n_i /h). Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними строят прямоугольники высотой n_i (или n_i /h) [7].

Пример 4. Построить гистограмму частот для данных из примера 2. Решение. Воспользуемся интервальным распределением, полученным в примере 2.

в примере	2.		-				
Границы частичных интервалов	[44; 54)	[54; 64)	[64; 74)	[74; 84)	[84; 94)	[94; 104)	[104; 114)
Частота	3	4	6	9	6	5	5
	9 - 8 - 7 - 6 - 5 -					HAVE	F. Falling

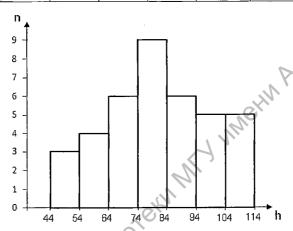


Рис. 2.3 – Гистограмма частот, построенная на основе статистического распределения эмпирических данных

Гистограмму можно использовать для построения распределения. Для этого на гистограмме отмечают середины верхних сторон прямоугольников и соединяют их отрезками, а концы «замыкают» на х_{тіп} и х_{тах}.

Задания для самостоятельной работы

- 1. Какая из перечисленных процедур отбора приведет к случайной выборке [21]:
 - а) генеральная совокупность зрители определенной телевизионной программы (например, «Поле чудес»), процедура отбора - в определенный вечер опрашиваем каждого пятого зрителя, сидящего в зале студии;
 - б) генеральная совокупность домашний пирог, процедура отбора кусок, отрезанный от любой части пирога;
 - в) генеральная совокупность ученики города Минска, процедура отбора - классный руководитель каждой школы города отбирает и присылает для участия в исследовании ученика.

2. Построить полигон частот по данному распределению выборки [6]:

Xi	1	4	5	7
ni	20	10	14	6 .

3. По данному распределению выборки объема n =100 A. Wheilio Ba построить гистограмму [6]:

№ интервала	Частичный интервал	Частота
î.	[1; 5)	10
2.	[5; 9)	20
3.	[9; 13)	50
4.	[13; 17)	12
5.	[17; 21]	8

4. Дана частотная таблица роста мужей и жен. Построить гистограмму и полигон частот по этим данным [25]:

Мужья		Жены			
Интервал (в мм)	Частота	Интервал (в мм)	Частота		
1550 - 1599	5	1400 – 1449	3		
1600 – 1649	12	1450 – 1499	5		
1650 - 1699	36	1500 – 1549	27		
1700 – 1749	55	1550 – 1599	54		
1750 – 1799	35	1600 – 1649	43		
1800 - 1849	16	1650 – 1699	29		
1850 - 1899	9	1700 – 1749	7		
1900 - 1949	1/2	1750 – 1799	1		

5. В исследовании изучалась способность детей соотносить изображения различных животных с их названием. Каждому ребенку предъявляли по 20 картинок. Количество правильных ответов для 15 детей приведено

20, 18, 13, 16, 9, 11, 17, 20, 14, 13, 20, 8, 17, 20, 14.

Построить вариационный ряд, определить объем выборки, представить распределение частот и полигон частот [25].

6. В результате рейтингового оценивания по предмету учащиеся класса получили следующее количество баллов:

75, 145, 150, 180, 125, 150, 150, 165, 95, 135, 130, 70, 130, 105, 135, 135, 100, 160, 60, 85, 120, 60, 145, 150, 135.

вариационный ряд, Построить определить объем выборки, представить интервальное распределение выборки и гистограмму.

7. Пятнадцать испытуемых производят по 25 выстрелов по мишени. Количество попаданий представлено ниже:

19, 10, 12, 13, 17, 14, 17, 15, 14, 15, 17, 15, 18, 19, 22.

Построить вариационный ряд, представить распределение частот и точечную диаграмму.

8. На экзамене по математике девятиклассники получили следующие

баллы: 7, 9, 7, 6, 8, 6, 4, 7, 4, 6, 4, 3, 10, 5, 5, 10, 4, 8, 10, 10, 5, 6.

Представить данные в виде вариационного ряда, статистического распределения, точечной диаграммы и полигона частот.

- 9. В химической лаборатории был определен удельный вес некоторого вещества в серии проб (в %) [7]:
- 53, 33, 11, 55, 34, 13, 58, 36, 16, 61, 37, 17, 63, 39, 19, 66, 40, 20, 42, 22, 44, 23, 24, 45, 26, 28, 47, 49, 29, 51.

Представить данные в виде вариационного ряда, интервального распределения, гистограммы и полигона частот. Охарактеризовать полученное распределение.

- В результате исследования уровня IQ у пятидесяти школьников получен следующий вариационный ряд:
- 119, 86, 100, 93, 108, 88, 104, 127, 103, 112, 111, 112, 113, 114, 115, 108, 116, 98, 121, 130, 104, 88, 113, 89, 103, 83, 91, 97, 87, 101, 107, 78, 110, 98, 84, 107, 92, 105, 89, 95, 111, 98, 84, 102, 92, 110, 101, 85, 114, 102.

Построить вариационный ряд IQ. Задать статистическое распределение выборки и его графическое представление [25].

- **11.** В результате исследования удовлетворенности работой у педагогов школы были получены следующие данные:
- 67, 63, 64, 57, 56, 55, 53, 53, 54, 54, 45, 45, 46, 47, 37, 23, 34, 44, 27, 44, 45, 34, 34, 15, 23, 43, 16, 44, 36, 36, 35, 37, 24, 24, 14, 43, 37, 27, 36, 26, 25, 36, 26, 5, 44, 13, 33, 33, 17, 33.

Представить данные в виде интервального распределения и гистограммы. Охарактеризовать полученное распределение, если большой показатель означает выраженное удовлетворение, а маленький — слабое удовлетворение [25].

- **12.** Группе из 42 школьников давалось тестовое задание и фиксировалось время его выполнения в секундах. Были получены следующие значения:
- 63, 35, 58, 53, 45, 61, 37, 58, 51, 40, 60, 55, 43, 57, 50, 61, 44, 64, 45, 77, 53, 46, 47, 72, 49, 51, 64, 52, 56, 58, 59, 60, 49, 64, 32, 51, 64, 65, 69, 66, 40, 69.

Представить данные в виде интервального распределения и гистограммы; охарактеризовать полученное распределение [13].

Практическое задание. Для показателей среднего балла успеваемости учащихся класса за последнюю четверть задайте интервальное распределение и гистограмму. Охарактеризуйте полученное распределение.

ТЕМА 3. ВЫЧИСЛЕНИЕ ОСНОВНЫХ СТАТИСТИЧЕСКИХ ПОКАЗАТЕЛЕЙ

1. Меры центральной тенденции

Для описания исходных данных используют ряд показателей, которые позволяют охарактеризовать всю совокупность исходных данных в целом. Такие показатели называют мерами центральной тенденции (МЦТ). Они показывают, где в основном расположены значения признака. Наиболее распространенными являются следующие меры центральной тенденции: мода, медиана, среднее значение.

OBO

 $Mo\partial a~(M_0)$ — это такое значение признака, которое встречается в выборке наиболее часто.

Например: в выборке 4, 2, 8, 8, 4, 8, 10 M_0 =8, т.к. значение 8 встречается наиболее часто - 3 раза. Необходимо помнить, что мода представляет собой наиболее частое значение (в данном примере 8), а не частоту этого значения (в примере равную 3).

Правила для определения моды [4]:

1) если все значения выборки встречаются одинаково часто, то принято считать, что выборка не имеет моды.

Например: a) 2, 2, 2, 3, 3, 3 – моды нет; б) 1, 2, 3, 4, 5, 6 – моды нет. Но 2, 2, 2, 2, 2, $-M_0 = 2$.

2) если в упорядоченной выборке два смежных (соседних) значения имеют одинаковую частоту и она больше частоты любого другого значения, то мода равна среднему значению этих двух соседних величин.

Например: a) 1, 4, 3, 3, 6, 2, 8, 2, 10. Упорядочим выборку: 1, 2, 2, 3, 3, 4, 6, 8, 10. Тогда $M_0 = (2+3):2=2,5;$ б) 2, 2, 4, 4, 6, 6, 10, 12; $M_0 = (2+4+6):3=4$.

3) если в упорядоченной выборке два несмежных значения имеют равную частоту и она больше частоты других значений, то в этом случае говорят, что выборка имеет две моды и называется бимодальной выборкой.

Например:

a) 2, 2, 3, 4, 4, 6 M_{01} = 2, M_{02} = 4;

6) 2, 2, 3, 4, 4, 6, 6 M_{01} = 2; M_{02} = (4+6):2=5;

Выборка может иметь и более двух мод.

Например: 2, 4, 4, 4, 6, 8, 8, 8, 9, 10, 10, 10 $M_{01} = 4$, $M_{02} = 8$, $M_{03} = 10$.

 $Meduana (M_c)$ — это значение признака, которое делит упорядоченную выборку пополам, т.е. половина значений выборки меньше медианы, а вторая половина больше медианы.

Правила для вычисления медианы [4]:

1) если количество наблюдений в выборке нечетно, то медиана равна значению, расположенному точно в середине упорядоченной выборки.

Например: 11,13, <u>18</u>, 19, 20, $M_e = 18$.

Если объем выборки невелик, то моду легко найти по вариационному ряду. Если же выборка имеет большой объем, то можно рассчитать номер

элемента, который является медианой выборки с нечетным количеством наблюдений, по формуле $i = \frac{n+1}{2}$, где n- объем выборки.

Например: n=127, i=(127+1):2=64, $M_e=x_{64}$, т.е. медианой является значение, расположенное на 64-м месте в упорядоченной выборке.

2) если количество наблюдений в выборке четно, то медиана равна среднему значению двух величин, расположенных в середине упорядоченной выборки.

Например: 2, 3, $\frac{5}{5}$, $\frac{7}{5}$, 8, 10, $M_e = (5+7):2=6$, где n- объем выборки.

Для выборки большого объема номера двух элементов, расположенных в середине упорядоченной выборки, содержащей четное количество значений, вычисляются с помощью формул: $i = \frac{n}{2}$ и $i+1=\frac{n}{2}+1$.

Например: π =116, i=116:2=58, i+1=116:2+1=59, M_e =(x_{58} + x_{59}):2, т.е. медиана равна среднему значению величин, расположенных на 58-м и 59-м местах в упорядоченной выборке.

Среднее арифметическое значение выборки (среднее значение) — это сумма всех ее значений, разделенная на количество элементов выборки. Среднее значение обычно обозначается \overline{x} или M(x):

$$\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 , где n – объем выборки.

Например: 1, 3, 3, 5, 5, 9, 9; \mathbf{n} =7, \mathbf{x} =(1+3+3+5+5+9+9):7= 35:7= 5.

Если значения признака повторяются, то \bar{x} вычисляется по формуле:

$$\overline{x} = \frac{x_1 n_1 + x_2 n_2 + \ldots + x_k n_k}{n}$$
, где $n_1 + n_2 + \ldots + n_k = n$.

Для предыдущего примера:

$$\bar{x} = (1+3\times2+5\times2+9\times2):7 = (1+6+10+18):7=35:7=5$$

Среднее значение представляет вариационный ряд, если одновременно выполняются следующие условия:

- объем выборки достаточно велик;
- гистограмма распределения симметрична;
- отсутствуют выбросы (т.е. очень большие или очень малые значения).

Если хотя бы одно из этих условий не выполняется, то при анализе данных следует ограничиться модой и медианой.

Меры центральной тенденции можно рассчитывать по распределению частот.

Пример 1. Вычислить моду, медиану и среднее значение выборки, представленной в виде статистического распределения:

ſ	Xi	2	3	4	5	7	10
	n _i	3	1	3	2	4	2

Решение:

- 1) модой является такое значение x_i , частота которого n_i максимальна: $M_0 = 7$, поскольку это значение встречается чаще всего (4 раза);
- 2) для определения медианы вначале выясняем, сколько значений содержит выборка: n=15 нечетное. Тогда медианой будет являться значение, расположенное в середине ряда, номер которого равен i=(n+1):2=(15+1):2=8. Начинаем последовательно суммировать частоты n_i , пока не достигнем нужного элемента: $n_1+n_2+n_3=3+1+3=7$. Значит следующим, восьмым элементом, будет значение выборки, равное 5. $M_e=x_8=5$;
- 3) для определения \bar{x} нужно каждое значение x_i умножить на его частоту n_i , произведения сложить и разделить на объем выборки n:

$$\bar{x} = (2 \times 3 + 3 \times 1 + 4 \times 3 + 5 \times 2 + 7 \times 4 + 10 \times 2):15 = 79:15 = 5,26.$$

Таким образом, меры центральной тенденции позволяют судить о концентрации исходных данных на числовой оси, т.е. показывают, где в основном расположены значения признака.

2. Меры изменчивости

Меры изменчивости (рассеяния, разброса) — это характеристики выборки, которые показывают, насколько изменчивы значения признака, насколько они рассеяны относительно среднего. К ним относятся размах, дисперсия, стандартное отклонение, коэффициент вариации [4].

Pазмах выборки (R) — это мера изменчивости, равная разности максимального и минимального значений выборки: $R=x_{max}-x_{min}$.

Размах достаточно грубая мера изменчивости, т.к. для ее нахождения используются только два элемента выборки, а распределение остальных элементов не учитывается.

Например, рассмотрим две выборки, каждая из которых состоит из ста элементов:

Несмотря на то, что выборки существенно различаются, размахи выборок равны.

$$(x_1 - \overline{x}) + (x_2 - \overline{x}) + \dots + (x_n - \overline{x}) = \sum_{i=1}^n (x_i - \overline{x})$$

Но по свойству среднего значения эта сумма всегда равна нулю, т.к. отклонения могут принимать как положительные, так и отрицательные значения. Для преодоления этого недостатка каждое отклонение нужно

возвести в квадрат:

$$(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2 = \sum_{i=1}^n (x_i - \overline{x})^2$$

Miemorg Чтобы получить величину, характеризующую отклонение каждого отдельного элемента выборки от среднего значения, полученную сумму необходимо поделить на число элементов п. Полученная величина и есть дисперсия:

$$D = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n}, \text{ где } n \ge 30.$$

Для малых выборок формула для вычисления дисперсии принимает вид:

$$D = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$
, где п < 30.

Чем больше дисперсия выборки, тем больше разбросаны исходные значения по числовой оси относительно среднего значения выборки.

Пример 2. Вычислить дисперсию для следующей выборки: 3, 5, 6, 9, 11, 14.

Решение: Определим объем выборки: n=6.

Вычислим среднее значение выборки: x=(3+5+6+9+11+14):6=48:6=8Вычислим дисперсию с учетом того, что n < 30:

$$D = \sum_{i=1}^{n} (x_i - \bar{x}_i)^2 : (n-1) = [(3-8)^2 + (5-8)^2 + (6-8)^2 + (9-8)^2 + (11-8)^2 + (14-8)^2] : (6-1) =$$

$$= [(-5)^2 + (-3)^2 + (-2)^2 + 1^2 + 3^2 + 6^2] : 5 = (25+9+4+1+9+36) : 5 = 84 : 5 = 16,8.$$

Стандартное отклонение или среднее квадратическое отклонение $(\sigma - cuz_M a)$ — мера изменчивости, которая позволяет охарактеризовать разброс элементов выборки относительно среднего значения.

Стандартное отклонение тесно связано с дисперсией. Поскольку для нахождения дисперсии каждое отклонение признака от среднего значения возводили в квадрат, то для получения величины, сопоставимой со средним значением, необходимо из дисперсии извлечь квадратный корень. величину и назвали квадратическим Полученную средним стандартным отклонением: $\sigma = \sqrt{D}$.

Если
$$n \ge 30$$
, то $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n}}$; если $n < 30$, то $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n-1}}$. Если значения признака повторяются, то $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2} \times n_{i}}{n-1}}$

Пример 3. Вычислить стандартное отклонение для выборки из примера 2: 3, 5, 6, 9, 11, 14.

Решение:
$$\sigma = \sqrt{D}$$
. В примере 2 дисперсия равна 16,8. Тогда $\sigma = \sqrt{16,8} \approx 4,1$

Дисперсию и стандартное отклонение можно легко рассчитать по статистическому распределению выборки.

*Allellogg Пример 4. Вычислить дисперсию и стандартное отклонение выборки по распределению частот:

Xi	1	2	3	4
ni	20	15	10	5

Решение:

Определим объем выборки: n=20+15+10+5=50.

Вычислим среднее значение:

$$\bar{x}$$
=(1×20+2×15+3×10+4×5):50=(20+30+30+20):50=100:50=2.

Вычислим дисперсию для выборки объемом n > 30:

D=[
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 \times n_i$$
]:n=[(1-2)²×20+(2-2)²×15+(3-2)²×10+(4-2)²×5]:50=
=[(-1)²×20+(0)²×15+1²×10+2²×4]:50=(20+0+10+20):50=50:50=1.

Вычислим стандартное отклонение:

$$\sigma = \sqrt{D} = \sqrt{1} = 1.$$

Небольшая величина стандартного отклонения говорит однородности выборки, т.е. среднее значение является типичным значением для вариационного ряда. При очень большом стандартном отклонении среднее значение в меньшей степени характеризует вариационный ряд, что говорит о значительной вариабельности признака или неоднородности исследуемой группы.

Коэффициент вариации (v) - мера изменчивости, которая позволяет оценить степень рассеяния вариант около среднего значения.

Коэффициент вариации вычисляется по формуле:

$$v = \frac{\sigma}{\overline{x}} \times 100\%$$
.

Если у < 10%, это говорит о малом рассеянии вариант вокруг среднего значения:

если 10% < v < 20%, то можно говорить о среднем рассеянии вариант; если v < 20%, то рассеяние вариант вокруг среднего является сильным и среднее не является типичным значением вариационного ряда [12].

Пример 5. Определить коэффициент вариации по данным примера 4.

Решение. Для предыдущего примера $\bar{x} = 2$, $\sigma = 1$.

Тогда $v = \frac{\sigma}{\overline{z}} \times 100\% = 1:2 \times 100\% = 0,5 \times 100\% = 50\%$ — сильное рассеяние вариант около среднего значения.

3. Асимметрия и эксцесс

Существуют характеристики выборки, которые показывают, наблюдаются ли в ней преимущественные значения признака. Они также определяют форму графического представления данных и называются мерами формы. К мерам формы относятся асимметрия и эксцесс.

Асимметрией (A) называют степень отклонения графического представления данных (гистограммы или полигона частот) от симметричного вида относительно среднего значения [18]. Для вычисления асимметрии используется формула:

$$A = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^3}{n \times \sigma^3},$$

где n- объем выборки, $\sigma-$ стандартное отклонение, $\bar{x}-$ среднее значение.

Асимметрия показывает, какие значения преобладают в выборке: больше среднего значения или меньше его.

Свойства асимметрии [18]:

- 1) если A>0, то говорят о *положительной (левосторонней)* асимметрии, т.е. в выборке чаще встречаются значения меньше среднего значения;
- 2) если A<0, то говорят об *отрицательной (правосторонней)* асимметрии, т.е. в выборке чаще встречаются значения больше среднего значения:
- 3) если A=0, то это означает, что исходная выборка (ее гистограмма) является симметричной относительно прямой $x=\bar{x}$.

На практике полностью симметричные гистограммы или полигоны частот встречаются довольно редко.

Эксцесс (E) — это мера плосковершинности или остроконечности графического представления данных (гистограммы или полигона частот) [18].

Для вычисления эксцесса используется формула:

$$E = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^4}{n \times \sigma^4} - 3,$$

где n- объем выборки, $\sigma-$ стандартное отклонение, $\bar{x}-$ среднее значение.

У Эксцесс позволяет определить, насколько кучно основная масса данных группируется вокруг среднего значения.

Свойства эксцесса [18]:

- 1) если E >0, то говорят, что исходные данные соответствуют *островершинному распределению*, т.е. кучно расположены вокруг среднего значения:
- 2) если -3<E<0, то говорят, что исходные данные соответствуют плосковершинному распределению, т.е. рассеяны относительно среднего значения;

3) если Е=0, то говорят, что исходные данные соответствуют средневершинному распределению.

Пример 6. По данным примера 4 вычислить асимметрию и эксцесс:

Xi	1	2_	3	4
ni	20	15	10	5

Решение. В результате расчетов было установлено, что n = 50, $\bar{x} = 2$, $\sigma = 1$. Воспользуемся формулой для вычисления асимметрии: $A = \sum_{n=0}^{\infty} (x_n - \bar{x})^3 \cdot (n \times \sigma^3)^{-r/3} = 0$

$$A = \sum_{i=1}^{n} (x_i - \bar{x})^3 : (n \times \sigma^3) = [(1-2)^3 \times 20 + (2-2)^3 \times 15 + (3-2)^3 \times 10 + (4-2)^3 \times 5] : (50 \times 1^3) =$$

$$= [(-1)^3 \times 20 + (0)^3 \times 15 + 1^3 \times 10 + 2^3 \times 5] : 50 = (-20 + 0 + 10 + 40) : 50 = 30 : 50 = 0,6 -$$
левосторонняя асимметрия.

Воспользуемся формулой для вычисления эксцесса:

$$E = \sum_{i=1}^{n} (x_i - \bar{x})^4 / (n \times \sigma^4) - 3 = [(1-2)^4 \times 20 + (2-2)^4 \times 15 + (3-2)^4 \times 10 + (4-2)^4 \times 5] : (50 \times 1^4) - 3 = [(-1)^4 \times 20 + (0)^4 \times 15 + 1^4 \times 10 + 2^4 \times 5] : 50 - 3 = (20 + 0 + 10 + 80) : 50 - 3 = 110 : 50 - 3 = 2,2 - 3 = -0,8 -$$
 данные соответствуют плосковершинному распределению.

Выбор числовых характеристик для описания выборки зависит от того, в какой шкале проведено измерение признака. Для данных, представленных в номинальной шкале, подходящей мерой является мода. Данные, измеренные в ранговой шкале, можно описать с помощью медианы. Количественные данные можно представить с помощью среднего значения и стандартного отклонения [18].

4. Распределение признака и его виды

Распределением признака называется закономерность встречаемости его различных значений. Для его описания используются параметры распределения.

Параметры распределения – это числовые характеристики. представляющие распределение. Одни из них - меры центральной тенденции – указывают, где в основном расположены значения признака; другие — меры разброса — насколько значения признака изменчивы; третьи – меры формы – наблюдается ли преимущественное появление определенных значений признака.

В психологии чаще всего ссылаются на нормальное (гауссово) распределение. Оно характеризуется тем, что крайние значения признака встречаются достаточно редко, а средние - достаточно часто. График нормального распределения представляет собой колоколообразную средневершинную кривую, симметричную относительно прямой $x = \bar{x}$.

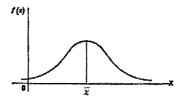


Рис. 3.3 - График нормального распределения

Нормальное распределение характеризуется следующими параметрами:

1) мода, медиана и среднее значение выборки совпадают: $M_0 \approx M_e \approx \bar{x}$;

18H088

- 2) дисперсия и стандартное отклонение невелики;
- 3) асимметрия и эксцесс равны нулю.

3 Hekipohhhbi

Если асимметрия отлична от нуля, то распределение признака является асимметричным. Графически асимметричные распределения можно представить следующим образом [18, с.47]:

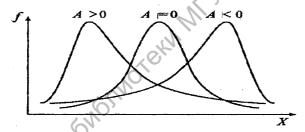


Рис. 3.4 - Графики распределения частот с различными значениями асимметрии

Распределения признаков с различными эксцессами графически выглядят следующим образом [18, с. 47].

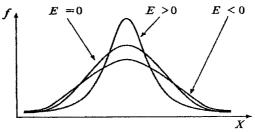


Рис. 3.5 – Графики распределения частот с различными значениями эксцесса

Таким образом, распределение признака позволяет в графическом

виде представить вариативность этого признака.

5. Правило Зо

Между средним значением \bar{x} , стандартным отклонением σ и значениями признака, подчиняющимися закону нормального распределения, существует строгая зависимость: отклонения вариант от среднего значения охватывают шесть стандартных отклонений (6 σ), три из них расположены слева от среднего значения и три — справа. При этом 68,26% вариант всегда лежат в диапазоне $\pm 1\sigma$ от \bar{x} , 95,44% вариант расположены в пределах $\pm 2\sigma$ и 99,72% вариант — в пределах $\pm 3\sigma$ от среднего значения, какова бы ни была величина стандартного отклонения.

Указанные взаимоотношения среднего значения, стандартного отклонения и отдельных вариант в математической статистике называют правилом трех стандартных отклонений или правилом трех сигм (3 σ). Графически это правило можно представить следующим образом [8, с.22]:

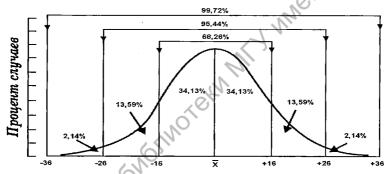


Рис. 4.2 - Графическое представление правила трех сигм

Это означает, что вероятность попадания в интервал (-1 σ ; +1 σ) взятого наугад значения из вариационного ряда равна 0,6826 (т.е. соответствует примерно 68,3% площади под кривой нормального распределения), в интервал (-2 σ ; +2 σ) – 0,9544 (что соответствует примерно 95,5% площади), а в интервал (-3 σ ; 3 σ) – 0,9972 (что соответствует примерно 99,7% площади).

Полезно также знать, что при нормальном распределении 90% вариант расположено в диапазоне значений $\bar{x} \pm 1,64\sigma$, 95% вариант — в диапазоне значений $\bar{x} \pm 1,96\sigma$ и 99% вариант — в диапазоне значений $\bar{x} \pm 2,58\sigma$.

Закономерности нормального распределения позволяют по двум параметрам построить весь вариационный ряд [12].

Пример 3 [12]. Пусть для некоторого изучаемого признака, распределенного по нормальному закону, n=500, $\bar{x}=40$ и $\sigma=3$. Какие максимальное и минимальное значения принимает признак? Сколько

значений признака будут находиться в интервале (37; 43)?

Решение. Воспользуемся правилом 3 с.

$$x_{min} = x-3\sigma = 40-3 \times 3 = 40-9 = 31$$
;

$$x_{\text{max}} = \bar{x} + 3\sigma = 40 + 3 \times 3 = 40 + 9 = 49$$
.

Значение 37 отклоняется от среднего значения 40 на 3, т.е. на величину -1 σ ; значение 43 отклоняется от среднего значения 40 на 3, т.е. на величину +1 σ . Известно, что в диапазоне $\pm 1\sigma$ лежит 68,3% вариант.

Тогда количество значений признака, попадающих в интервал (37, 43), можно вычислить следующим образом: $(500 \times 68,3):100 \approx 341$.

Задания для самостоятельной работы

- **1.** Вычислить моду, медиану и среднее значение для каждой из представленных ниже групп измерений [25]:
 - a) 10, 8, 6, 0, 8, 3, 2, 5, 8, 0;
 - б) 1, 3, 3, 5, 5, 5, 7, 7, 9;
 - в) 119, 5, 4, 4, 4, 3, 1, 0.
- В какой группе среднее неподходящая мера центральной тенденции? Почему?
- **2.** Исследование показало, что большинство детей, убежавших из дома и пойманных милицией, уже задерживались ранее по той же причине. Вычислить среднее, моду и медиану по следующим эмпирическим данным [25]:

Число предыдущих задержаний	0	(9	2	3	4	5	6	7
Частота	3	4	6	9	6	2	3	2

3. Построить статистическое распределение выборки из 60 абитуриентов, для которых подсчитывалось число баллов, полученных при профессиональном тестировании. Вычислить среднее, моду и медиану [25]:

20	19	22	24	21	18	23	17	20	16	15	23	21	24	21	18	23	21	19	20
24	21	20	18	17	22	20	16	22	18	20	17	21	17	19	20	20	21	18	22
23	21	ر25	22	20	19	21	24	23	21	19	22	21	19	20	23	22	25	21	21

- 4. Вычислить размах, дисперсию, стандартное отклонение и коэффициент вариации для каждой из представленных ниже групп измерений:
 - a) 10, 8, 6, 0, 8, 3, 2, 2, 8, 0;
 - б) 1, 3, 3, 5, 5, 5, 7, 7, 9;
 - B) 20, 1, 2, 5, 4, 4, 4, 0;
 - Γ) 5, 5, 5, 5, 5, 5, 5, 5, 5, 5.
- В какой группе размах является неподходящей мерой разброса? Почему в задании в стандартное отклонение такое большое [25]?
- **5.** Три класса учащихся выполняли тест на тревожность. В результате обработки результатов исследования получены следующие данные:

$$-9 \text{ (A)} - \overline{x} = 72, \sigma = 2,1;$$

$$-9 \text{ «Б»} - \overline{x} = 74, \sigma = 5,6;$$

$$-9 \, \text{«B»} - \overline{x} = 70, \, \sigma = 4,0.$$

В каком классе школьники более всего отличаются по тревожности, в каком — менее всего [25]?

(SIIIOBS

6. В исследовании времени простой сенсомоторной реакции в ответ на звуковой сигнал участвовало 20 испытуемых. Получены следующие значения времени реакции (в миллисекундах): 138, 180, 160, 144, 169, 140, 178, 134, 141, 174, 137, 172, 143, 126, 139, 130, 127, 144, 125, 132.

Вычислить размах, дисперсию, стандартное отклонение и коэффициент вариации [25].

7. В результате диагностики 24 испытуемых с помощью методики Басса-Дарки были получены следующие данные по параметру «негативизм»: 2, 2, 3, 3, 3, 2, 3, 5, 2, 4, 5, 2, 4, 1, 5, 1, 3, 1, 5, 5, 3, 3, 2, 3. Вычислите асимметрию и эксцесс распределения.

Практическое задание. Вычислите средний балл успеваемости учащихся класса за последнюю четверть и соответствующее стандартное отклонение. Определите форму распределения исследуемого признака.

ТЕМА 4. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

1. Гипотеза. Виды гипотез

Одним из основных понятий, используемых в научных исследованиях, является *гипотеза* (от греч. hypothesis — основание, предположение). Гипотеза в научных исследованиях выдвигается для того, чтобы дать предварительное, но вероятностное объяснение реальному обстоятельству, которое более или менее исследовано.

Выделяют следующие виды гипотез: теоретические и статистические.

Теоретическая (научная) гипотеза — это научно обоснованное высказывание вероятностного характера относительно сущности, взаимосвязей и причин явлений объективной действительности [8].

Статистическая гипотеза— это предположение о распределении вероятностей признака, которое мы хотим проверить по имеющимся данным.

Выделяют нулевую (основную) и альтернативную (конкурирующую) статистические гипотезы [27].

Нулевая гипотеза (H_o) — это предположение о том, что между статистическими показателями двух групп различий нет, т.е. обе выборки принадлежат к одной совокупности и различия между ними признаны случайными (недостоверными).

Например, уровень умственного развития гимназистов (\bar{x}_1) не отличается от уровня умственного развития учащихся общеобразовательных школ (\bar{x}_2) , т.е. $\bar{x}_1 = \bar{x}_2$ или $\bar{x}_1 - \bar{x}_2 = 0$ (отсюда название гипотезы — нулевая).

Альтернативная гипотеза (Н1) – это рабочая гипотеза исследования,

предположение о том, что между выборками существуют достоверные различия и они обусловлены влиянием независимой переменной. Например, уровень умственного развития гимназистов отличается от уровня умственного развития учащихся общеобразовательных школ (т.е. $\bar{x}_1 \neq \bar{x}_2$).

SIIIOBO Альтернативная гипотеза — это предположение, которое хочет доказать исследователь, поэтому ее иногда называют экспериментальной гипотезой.

Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными [27].

Ненаправленные гипотезы говорят только о наличии или отсутствии различий. Примером ненаправленных гипотез являются сформулированные выше гипотезы об уровне умственного развития гимназистов и учащихся общеобразовательных школ.

Направленные гипотезы говорят не только о наличии или отсутствии различий, но и указывают направление различий.

Например, Н_о: уровень умственного развития гимназистов не превышает уровня умственного развития учащихся общеобразовательных школ;

Н₁: уровень умственного развития гимназистов превышает уровень умственного развития учащихся общеобразовательных школ.

В статистических гипотезах речь идет не об арифметических (т.е. числовых), а о статистически значимых различиях: т.е. с одинаковой ли частотой встречаются различные значения признака в обоих эмпирических распределениях.

Альтернативная гипотеза Н₁ принимается, (а не доказывается), если с помощью рассуждений мы можем отвергнуть нулевую гипотезу Но, т.е. альтернативная гипотеза подтверждается не прямо, а косвенно.

2. Зависимые и независимые выборки

В зависимости от цели исследования экспериментатор использует два вида выборок – зависимые и независимые.

Зависимые (связанные) выборки характеризуются тем, что каждому испытуемому одной выборки можно поставить в соответствие определенному критерию испытуемого из другой выборки. Например, испытуемые группы до и после коррекционного воздействия; выборки мужей и жен; выборки, состоящие из близнецов. Количество объектов в зависимых выборках всегда одинаково[18].

Независимые (несвязанные) выборки характеризуются тем, вероятность отбора любого испытуемого из одной выборки не зависит от отбора любого из испытуемых другой выборки. Например, контрольная и экспериментальная группы в исследовании. Допускается, чтобы количество испытуемых в независимых выборках было различным[18].

Различия между зависимыми и независимыми выборками можно представить, используя следующую схему психологического исследования [13]:

Таблица 4.1 – Схема психологического исследования

	Экспериментальная группа	Контрольная группа	
	1. Начальный срез	2. Начальный срез	
	Экспериментальное воздействие есть	Экспериментального воздействия нет	-2
	3. Конечный срез	4. Конечный срез	200
виси 3. П	исимыми выборками являются имыми выборками – группы 1 и (онятие о числе степеней свобод характеристики выборки испо	ы [13]	4;

независимыми выборками – группы 1 и 2, а также группы 3 и 4.

Для характеристики выборки используется показатель, зависящий от ее объема, который называется числом степеней свободы.

Число степеней свободы (v) – это число данных из выборки, значения которых могут быть случайными.

Пусть мы имеем выборку x_1, x_2, \ldots, x_n . Общей характеристикой выборки является сумма всех ее значений $x_1 + x_2 + ... + x_n$. Тогда каждое отдельное значение выборки х; можно узнать, если от суммы всех значений отнять остальные n-1 значение. Число n-1 и является числом степеней своболы.

Например, известно, что два новорожденных весят в сумме 7,5 кг, а один из них 4 кг. Тогда вес второго уже определен весом первого (7,5-4=3,5), т.е. имеет одну степень свободы (2-1=1). Если три ребенка вместе весят 10,5 кг, то вес одного всегда точно определяется весом двух других, между которыми возможны вариации. В этом случае имеется две степени свободы (3-1=2), и т.д.

Число степеней свободы различно для зависимых и независимых выборок:

- для зависимых выборок объемом п число степеней свободы определяется по формуле v = n - 1;
- для независимых выборок объемами п₁ и п₂ число степеней свободы определяется по формуле $v=(n_1-1)+(n_2-1)=n_1-1+n_2-1=n_1+n_2-2$.

При использовании многомерных методов анализа данных (например, дисперсионный анализ) применяют более сложные подсчеты числа степеней свободы.

4. Уровень статистической значимости

Вопрос о принятии или отвержении статистической гипотезы не может быть решен со стопроцентной уверенностью. Всегда допускается риск принятия неправильного решения. Мерой такого риска является уровень значимости.

Уровень значимости (р) - это вероятность ошибки, которую мы допускаем при принятии статистической гипотезы [13].

- психолого-педагогических исследованиях, как правило, ограничиваются двумя уровнями значимости:
 - 1) р = 0,05 низший уровень статистической значимости;

2) р = 0,01 – достаточный уровень статистической значимости;

Так, уровень значимости p=0,05 означает, что имеется 5%-ная вероятность того, что найденная в выборке связь между переменными является случайной и характерной только для данной выборки: если из генеральной совокупности извлечено100 выборок, то из всех ста выводов мы можем ошибиться в 5% случаев, а не в одном выводе на 5%.

Уровень значимости р≤0,01 означает, что имеется 1 %-ная вероятность того, что найденная в выборке связь между переменными является случайной и характерной только для данной выборки: если из генеральной совокупности извлечено100 выборок, то из всех ста выводов мы можем ошибиться в 1% случаев [13, 26].

5. Статистические критерии и их характеристика

Проверка статистических гипотез осуществляется с помощью статистических критериев.

Статистический критерий — это решающее правило, обеспечивающее принятие истинной или отклонение ложной гипотезы с высокой вероятностью [30].

Статистические критерии обозначают также метод расчета определенного числа и само это число.

Статистический критерий имеет следующую структуру [18]:

- 1) формула расчета эмпирического значения критерия по исходным выборочным данным;
- 2) правило (формулу) для определения числа степеней свободы;
- 3) теоретическое распределение случайной величины для заданного числа степеней свободы;
- 4) правило соотнесения эмпирического значения критерия с теоретическим распределением для определения того, что гипотеза H₀ верна.

Одной из основных характеристик критерия является его мощность [27]. *Мощность статистического критерия* — это его способность не допустить ошибку, т.е. признать различия недостоверными, в то время как они достоверны. Одни и те же задачи могут быть решены с помощью различных критериев, обладающих разной мощностью.

Статистические критерии делятся на параметрические и непараметрические [27].

Параметрические критерии включают в формулу расчета параметры распределения (среднее значение, дисперсию) и применяются при анализе количественных данных, вписывающихся в кривую нормального распределения, например, t- критерий Стьюдента.

Непараметрические критерии включают в формулу расчета частоты и ранги, при этом данные могут быть измерены в номинальной или ранговой шкале, например, G-критерий знаков. Непараметрические критерии могут быть применимы также для анализа количественных данных, распределение

которых значительно отличается от нормального.

Решение о выборе критерия зависит от следующих характеристик [9]:

- типа шкалы, в которой измерен исследуемый признак;
- характера распределения признака (нормальное или отличное от него);
- количества сравниваемых выборок и их объема;
- качества выборок (зависимые или независимые).

ли независимые).

лощая схема проверки статистической гипотезы
Принятие решения об отклонении или принятии статистической гипотезы
ивается на семь этапов [9]:

1) формулировка нулевой и альтернативной гипотезы
2) выбор соответствию разбивается на семь этапов [9]:

- 3) выбор статистического критерия, который определяется решаемой психологической задачи:
- 4) вычисление по экспериментальным данным эмпирического значения выбранного статистического критерия (ЭМП):
- 5) нахождение по статистическим таблицам критических значений (КР) для выбранного статистического метода, соответствующих уровню значимости р=0,05 и р=0,01 при заданном объеме выборки (числе степеней свободы);
- б) сравнение вычисленного эмпирического и найденного критического значений;
 - 7) выбор соответствующей статистической гипотезы.

При выборе гипотезы используется правило отклонения H_0 $(принятия H_i)$ [18]:

- если эмпирическое значение критерия равняется критическому значению или превышает его (ЭМП≥КР) при уровне значимости p≤ 0,05, то H_0 отклоняется;
- если эмпирическое значение критерия равняется критическому значению или превышает его (ЭМП≥КР) при уровне значимости p≤ 0,01, то H_0 отклоняется и принимается H_1 .

Следует помнить, что у этого правила есть исключения, к которым относятся G-критерий знаков, Т-критерий Вилкоксона и U-критерий Манна-Уитни. При их проверке устанавливаются обратные соотношения между эмпирическим и критическим значениями.

Задания для самостоятельной работы

- 1. Исследователю требуется сравнить уровень интеллекта мужчин и женщин. Сформулировать: а) ненаправленные нулевую и альтернативную гипотезы исследования; данного б) направленные нулевую альтернативную гипотезы данного исследования [13].
- 2. Психологу нужно проверить эффективность проведенного им цикла занятий по коррекции тревожности у школьников. Сформулировать: а) ненаправленные альтернативную нулевую И гипотезы данного исследования; б) направленные нулевую и альтернативную гипотезы данного исследования.

- **3.** Определить, какие выборки (зависимые или независимые) принимали участие в исследованиях, представленных в двух предыдущих задачах.
- **4.** Чему равна степень свободы для двух зависимых выборок, объем которых п равен: а) 6; б) 14; в) 30 [13]?
- **5.** Чему равна степень свободы для двух независимых выборок, объем которых равен: а) n_1 =6 и n_2 =6; б) n_1 =14 и n_2 =16; в) n_1 =25 и n_2 =30 [12]?
- 6. Указать уровень значимости, на котором принимается нулевая гипотеза H_0 : а) p=0,17; б) p=0,05; в) p=0,01; г) p=0,004 [21].
- 7. Указать уровень значимости, на котором принимается альтернативная гипотеза H_1 : a) p=0,12; б) p=0,55; в) p=0,001; г) p=0,57 [21].
- **8.** Указать уровень значимости, при котором полученные результаты являются случайными: а) p=0,003; б) p=0,99; в) p=0,01; г) p=0,001 [21].
- 9. Указать уровень значимости, при котором полученные результаты являются достоверными: a) p=0.07; б) p=0.5; в) p=0.02; г) p=0.11 [21].

Практическое задание. Сформулировать проверяемую экспериментальную гипотезу. Определить соответствующие ей статистические гипотезы.

ТЕМА 5. ВЫЯВЛЕНИЕ ДОСТОВЕРНОСТИ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА

- 1. Классификация задач психологического исследования и методов их решения
- В психологическом исследовании экспериментатору чаще всего приходится решать четыре типа задач:
- 1) задачи, требующие выявления различий в уровне исследуемого признака. Например, необходимо установить, отличается ли уровень тревожности у юношей и девушек;
- 2) задачи, направленные на оценку сдвига значений исследуемого признака. Например, нужно сравнить показатели уровня агрессивности подростков до и после проведения психологического тренинга, чтобы определить его эффективность;
- 3) задачи на выявление различий в распределении признака. Например, необходимо сравнить распределения частоты выбора профиля обучения (гуманитарный или естественнонаучный) юношами и девушками;
- 4) задачи, требующие выявления степени согласованности изменений. Например, требуется определить, существует ли взаимосвязь между уровнем интеллекта и показателями школьной успеваемости.

Для решения каждого типа задач используются определенные методы (статистические критерии).

Краткая классификация задач и методов их решения представлена в таблице [9,27]:

Таблица 5.1 – Классификация задач и методов и решения

No	Задачи	Условия	Методы
1.	Выявление	2 выборки	Q-критерий Розенбаума;
	различий в уровне	испытуемых	U-критерий Манна-Уитни;
	исследуемого		t-критерий Стыодеита для
l	признака		независимых выборок
2.	Оценка сдвига	2 замера на одной и	Т-критерий Вилкоксона;
	значений	той же выборке	G-критерий знаков,
1	исследуемого	испытуемых	z- биномиальный критерий;
	признака		t-критерий Стыодента для зависимых
			выборок
3.	Выявление	сопоставление двух	χ ² -критерий Пирсона
	различий в	эмпирических	× ×
	распределении	распределений	
	признака		
4.	Выявление	два признака,	r _s – коэффициент ранговой корреляции
	степени	измеренных в	Спирмена
	согласованности	ранговой шкале	"CI,
	изменений	два количественно	r _{ху} — коэффициент линейной корреляции
		измеренных	Пирсона
		признака	

Для того чтобы принять решение о выборе метода математической обработки данных, необходимо определить, какой тип задач решается в исследовании, проанализировать условия решения задачи (например, в какой шкале измерен признак) и выбрать соответствующий критерий с учетом его ограничений.

2. Методы выявления различий в уровне исследуемого признака

Задачу сравнения данных исследователь решает в тех случаях, когда необходимо выявить различия между двумя и более группами испытуемых по исследуемому признаку. Например, сравнить уровень обученности гимназистов и учащихся общеобразовательной школы или сопоставить показатели эмоционального выгорания у педагогов, имеющих различный стаж работы (до 5 лет, 6-10 лет, 11-15 лет). Для выявления достоверности различий в уровне исследуемого признака используются следующие статистические критерии.

2.1 Q-критерий Розенбаума [27]

Назначение. Позволяет оценить различия между двумя выборками по уровню количественно измеренного признака, который варьирует в достаточном диапазоне значений.

Описание. Критерий может быть применен к количественным данным. Он требует достаточно тонко измеренных признаков, иначе сопоставление невозможно (например, если признак принимает всего три значения: 1,2,3). Критерий является достаточно простым непараметрическим методом оценки достоверности различий между двумя выборками. Два сравниваемых ряда значений располагают друг под другом так, чтобы можно было подсчитать так

называемые «хвосты» S₁ и S₂.

Графически О-критерий можно представить следующим образом [14]:

 $XXXX | XXXXXXXX | S_2$ S_1 yyyyyyyyyyyyy,

х – значения признака в первой выборке, где

у – значения признака во второй выборке.

Поэтому этот метод имеет также название «критерий хвостов».

Ограничения:

- 1) $n_1 \ge 11$, $n_2 \ge 11$, объемы выборок примерно равны;
- Velli08g 2) диапазоны разброса значений в двух выборках не должны совпадать между собой; минимальное и максимальное значение признака не должно принадлежать одной выборке.

Гипотезы:

Н₀: уровень признака в выборке 1 не превышает уровня признака в выборке 2.

Н₁: уровень признака в выборке 1 превышает уровень признака в выборке 2.

Алгоритм:

- 1. Проверить, выполняются ли ограничения $n_1 \ge 11$, $n_2 \ge 11$ и $n_1 \approx n_2$.
- 2. Упорядочить значения отдельно в каждой выборке по убыванию признака. Считать первой выборкой ту, значения в которой предположительно выше.
 - 3. Определить максимальное значение в выборке 2.
- 4. Подсчитать количество значений в выборке 1. которые выше максимального значения в выборке 2. Обозначить полученную величину как S₁.
 - 5. Определить минимальное значение в выборке 1.
- 6. Подсчитать количество значений в выборке 2, которые ниже минимального значения выборки 1. Обозначить полученную величину как S2.
 - 7. Подсчитать эмпирическое значение Q по формуле $Q_{\text{эмп}} = S_1 + S_2$.
- 8. По таблице критических значений определить значения Q для данных n_1 и n_2 (Приложение 1). Если $Q_{\text{эмп}} \ge Q_{\text{кр}}$ при уровне значимости р ≤ 0,05, то H_0 отвергается.
- 9. При n_1 , $n_2 > 26$ сопоставить полученное эмпирическое значение $Q_{\text{эмп}}$ с Q_{sp} =8 (p≤0,05) и Q_{sp} =10 (p≤0,01). Если Q_{sm} превышает или равно Q_{sp} =8, то H_0 отвергается.

Пример 1 [9]. Используя тест Векслера, психолог определил показатели вербального интеллекта V 11 гимназистов 12 обшеобразовательной школы. Показатели интеллекта представлены в таблице:

N₂	1	2	3	4	5	6	7	8	9	10	11	12
Гимназисты	134	96	100	130	104	126	104	120	120	120	120	
Школьники	76	120	82	82	118	84	110	88	104	102	100	96

Можно ли утверждать, что одна из выборок превосходит другую по

уровню вербального интеллекта?

Решение. Первой выборкой будем считать гимназистов, поскольку значения признака в ней выше. Сформулируем статистические гипотезы:

 H_0 : уровень вербального интеллекта в выборке гимназистов не превышает уровня вербального интеллекта в выборке школьников.

 H_1 : уровень вербального интеллекта в выборке гимназистов превышает уровень вербального интеллекта в выборке школьников.

Представим результаты измерения в виде, удобном для расчета Qкритерия Розенбаума, расположив числа в порядке убывания и одно измерение под другим:

По таблице Приложения 1 находим критические значения для n_1 =11 и n_2 =12:

$$Q_{\kappa p} = \begin{cases} 7, \text{ при } p \leq 0,05; \\ 9, \text{ при } p \leq 0,01. \end{cases}$$

Тогда $Q_{_{\text{ЭМП}}} > Q_{_{\text{Кр}}}$ при уровне значимости $p \le 0,05$. Следовательно, H_0 отвергается, H_1 — принимается, т.е. гимназисты превосходят учащихся общеобразовательной школы по уровню вербального интеллекта при уровне значимости p < 0,05.

2.2 U-критерий Манна-Уитни [27]

Назначение. Используется для оценки различий между двумя выборками по уровню признака, количественно измеренного.

Описание. Критерий позволяет выявить различия между малыми выборками и является более мощным, чем критерий Розенбаума. Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами значений признака. Первым рядом считаем тот, значения в котором предположительно выше. Чем меньше перекрещивающихся значений, тем более вероятно, что различия достоверны. Эмпирическое значение критерия отражает, насколько велика зона совпадения между рядами. Поэтому, чем меньше $U_{\text{эмп}}$, тем более вероятно, что различия достоверны. Графически U-критерий можно представить следующим образом [14]:

В случае (а) область наложения слишком мала, чтобы скрадывать различия между рядами, поэтому высока вероятность достоверности различий. В случае (в) область наложения настолько обширна, что различия между рядами скрадываются.

Ограничения:

- 1) $n_1 \ge 3$, $n_2 \ge 3$; если $n_1 = 2$, то $n_2 \ge 5$;
- 2) $n_1 \leq 60$, $n_2 \leq 60$.

Гипотезы:

leliloBg Н₀: уровень признака в выборке 1 не превышает уровня признака в выборке 2.

Н₁: уровень признака в выборке 1 превышает уровень признака в выборке 2.

Алгоритм:

- 1. Выписать все значения обеих выборок в один вариационный ряд, выделяя значения первой выборки, например, красным цветом (курсивом), а значения второй – синим (жирным шрифтом).
- 2. Проранжировать значения, приписывая меньшему значению меньший ранг. Всего рангов получится $n_1 + n_2$.
- 3. Подсчитать отдельно сумму рангов значений первой выборки (обозначенных красным цветом) и сумму рангов значений второй выборки (обозначенных синим цветом). Проверить, совпадает ли общая сумма рангов с расчетной, воспользовавшись формулой $\frac{n(n+1)}{2}$, где n – общее количество ранжируемых значений.
 - 4. Определить большую из двух ранговых сумм, обозначив ее Т.
 - 5. Определить эмпирическое значение критерия по формуле:

$$U_{_{3Mn}} = n_1 \cdot n_2 + \frac{n_x (n_x + 1)}{2} - T_x,$$

где n_1 и n_2 – количество испытуемых в выборке 1 и выборке 2 соответственно;

- $n_{\rm x}$ количество испытуемых в выборке с большей ранговой суммой.
- 6. По таблице критических значений определить критические значения U для данных n_1 и n_2 (Приложение 2). Если $U_{amn} > U_{kn}$ при уровне значимости р ≤0,05, то H_0 принимается. Если $U_{_{3M\Pi}} \le U_{_{KD}}$ при уровне значимости р ≤0,05, то H_0 отвергается. Чем меньше значения $U_{\text{эмп}}$ тем достоверность различий выше.

Необходимо отметить, что U-критерий является исключением из общего правила принятия решения о достоверности различий: мы можем констатировать достоверные различия в уровне выраженности признака. если U_{эмп}≤U_{кп}.

Пример 2 [9]. Лве группы испытуемых контрольная экспериментальная - решали техническую задачу. Показателем успешности решения служило время ее решения. Испытуемые экспериментальной группы получали дополнительную мотивацию в виде денежного вознаграждения. Показатели времени решения технической задачи представлены в таблице:

No	1	2	3	4	5	6	_ 7	8	9
Контрольная группа	46	8	50	45	32	41	41	31	55
Экспериментальная группа	39	38	44	6	25	25	30	43	

Можно ли утверждать, что денежное вознаграждение влияет на успешность решения задачи?

Решение. Первой выборкой будем считать контрольную группу, поскольку значения признака в ней выше. Сформулируем статистические гипотезы:

Н₀: время решения задачи в контрольной выборке не превышает время решения задачи в экспериментальной выборке.

H₁: время решения задачи в контрольной выборке превышает время решения задачи в экспериментальной выборке.

Представим результаты измерения в виде, удобном для расчета U-критерий Манна-Уитни. Для этого расположим значения обеих выборок в один вариационный ряд, выделяя значения первой выборки курсивом, а значения второй – жирным шрифтом:

6, 8, **25, 25, 30,** 31, 32, **38, 39,** 41, 41, **43,** 44, 45, 46, 50, 55.

Проранжируем значения по правилу «меньшему значению – меньший ранг», используя правила ранжирования связанных рангов:

Значения	6	8	25	25	30	31	32	38	39	41	41	43	44	45	46	50	55
Ранги	1	2	3,5	3,5	5	6	7	8	9	10,5	10,5	12	13	14	15	16	17

Вычислим сумму рангов для второй выборки: 1+3.5+3.5+5+8+9+12+13=55.

Вычислим общую сумму рангов: 55+98=153. Она равна расчетной сумме рангов, полученной по формуле: $17 \cdot (17+1)/2 = 17 \cdot 18/2 = 306/2 = 153$.

Большую ранговую сумму имеет первая выборка: $T_x = 98$.

Тогда $U_{3MI} = n_1 \cdot n_2 + n_x (n_x + 1)/2 - T_x = 8.9 + 9(9+1)/2 - 98 = 72 + 45 - 98 = 117 - 98 = 19.$

По таблице Приложения 2 находим критические значения U-критерий для $\mathbf{n}_1 = \mathbf{8}$ и $\mathbf{n}_2 = \mathbf{9}$:

$$U_{\kappa p} = \int 18$$
, при $p \le 0.05$; при $p \le 0.01$.

Тогда $U_{_{2M\Pi}} > U_{_{K\!P}}$ при уровне значимости р = 0,05. Следовательно, H_0 принимается, т.е. время решения задачи в контрольной выборке не превышает время решения задачи в экспериментальной выборке. Это означает, что денежное вознаграждение не приводит к статистически значимому повышению эффективности решения технической задачи испытуемыми.

3.3 t-критерий Стьюдента для независимых выборок [12,14]

Назначение. Позволяет оценить различия средних значений \bar{x}_1 и \bar{x}_2 двух выборок, данные которых распределены по нормальному закону.

Описание. Это мощный параметрический критерий, дающий достоверные PEHIOBS результаты даже если выборки малы. Он основывается на сравнении средних значений двух выборок.

Ограничения:

- 1) данные измерены в количественных шкалах;
- 2) распределение признака в обеих выборках соответствует закону нормального распределения;
- 3) объемы двух выборок не должны существенно отличаться друг от друга (не более чем в 1,5-2 раза).

Гипотезы:

Н₀: среднее значение признака в выборке 1 достоверно не отличается от среднего значения признака в выборке 2.

Н₁: среднее значение признака в выборке 1 достоверно отличается от среднего значения признака в выборке 2.

Алгоритм:

- 1. Вычислить статистики первой выборки \bar{x}_1 и σ_1 .
- 2. Вычислить статистики второй выборки \bar{x}_2 и σ_2 .
- 3. Вычислить число степеней свободы для независимых выборок объема $n_1 \mu n_2$: $\nu = n_1 + n_2 - 2$.
 - 4. Вычислить эмпирическое значение t-критерия по формуле:

$$t_{3,nn} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

числа степеней свободы v (Приложение 3). Если |t_{эмп} |≥t_{кр} при уровне значимости p =0,05, то H₀ отвергается. Если |t_{эмп}| < t_{кр}, то H₀ принимается.

Пример 3 [9]. Психолог измерял время сложной сенсомоторной реакции (в мс) у испытуемых контрольной и экспериментальной групп. В экспериментальную группу входили 9 спортсменов, а в контрольную – 8 человек, не занимающихся активно спортом. С помощью критерия Стьюдента определить, отличается ли средняя скорость сенсомоторной реакции у спортсменов и у людей, не занимающихся спортом?

Решение. Результаты эксперимента представим в виде таблицы и произведем в ней необходимые расчеты.

№ п.п.	Экспериментальная	Контрольная		ение от	Квадраты с	отклонений
1 2 3 4 5 6	группа (Х)	группа (Ү)	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(\mathbf{y}_{i} - \overline{y})^{2}$
1	504	580	-22	-58	484	3368
2	560	692	34	54	1156	2916
3	420	700	-106	62	11236	3844
4	600	621	74	-17	5476	289
5	580	640	54	-2	2916	4
6	530	561	4	-77	16	5929
7	490	680	-36	42	1296	1764
8	580	630	54	-8	2916	64
9	470	-	-56	-	3136	_
Сумма	4734	5104	0	0	28632	18174

Сформулируем статистические гипотезы:

 H_0 : среднее время сенсомоторной реакции в экспериментальной выборке достоверно не отличается от среднего времени сенсомоторной реакции в контрольной выборке.

 H_1 : среднее время сенсомоторной реакции в экспериментальной выборке достоверно отличается от среднего времени сенсомоторной реакции в контрольной выборке.

Вычислим среднее значение для каждой выборки:

$$\bar{x}_1 = 4734:9 = 526; \bar{x}_2 = 5104:8 = 638.$$

Вычислим дисперсию для каждой выборки:

$$D_1 = \sigma_1^2 = \sum (x_i - \bar{x})^2 / (n-1) = 28632:8 = 3579$$

$$D_2 = \sigma_2^2 = \sum (y_i - \bar{y})^2 / (n-1) = 18174:7 \approx 2596$$

Найдем число степеней свободы для выборок объема n_1 =9 и n_2 =8:v= n_1 + n_2 -2=9+8-2=15.

Вычислим эмпирическое значение критерия:

$$t_{\text{3MII}} = (\overline{x}_1 - \overline{x}_2) : \sqrt{(\sigma_1^2/n_1 + \sigma_2^2/n_1)} = (526 - 638) : \sqrt{(3579/9 + 2596/8)} = (-112) : \sqrt{(397,7 + 324,5)} \approx (-112) : \sqrt{722,2} \approx (-112) : 26,87 \approx -4,18.$$

По таблице Приложения 3 находим критические значения t-критерия для числа степеней свободы v=15:

$$t_{kp} = 2,13$$
, при $p \le 0,05$; 2,95, при $p \le 0,01$.

Тогда $|t_{_{\text{ЭМП}}}| > t_{_{\text{КР}}}$ при уровне значимости р $\leq 0,01$. Следовательно, H_0 отклоняется и принимается H_1 , т.е. скорость сенсомоторной реакции у спортсменов достоверно отличается от аналогичного показателя у лиц, не занимающихся спортом.

Если экспериментатору необходимо сравнить три и более выборки, то необходимо произвести попарное сравнение исследуемых выборок с помощью U-критерия Манна-Уитни. Например, если нужно сопоставить три выборки по уровню исследуемого признака, нужно сопоставить выборки 1 и 2, 1 и 3, 2 и 3.

Задания для самостоятельной работы

1. У 12 студентов психологического факультета и 14 студентов физического факультета ЛГУ были измерены показатели вербального интеллекта:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Студенты- психологи	126	127	132	120	119	126	120	123	120	116	123	115		
Студенты- физики	132	134	124	132	135	132	131	132	121	127	136	129	136	136

С помощью критерия Розенбаума проверить, превосходит ли одна группа студентов другую по уровню вербального интеллекта [27].

2. У 12 студентов психологического факультета и 14 студентов физического факультета ЛГУ были измерены показатели невербального интеллекта:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Студенты- психологи	113	107	123	122	117	112	105	108	111	114	102	104		
Студенты- физики	111	104	107	90	115	107	106	107	95	116	127	115	102	99

С помощью критерия Манна-Уитни проверить, превосходит ли одна группа студентов другую по уровню невербального интеллекта [27]. Можно ли решить эту задачу с помощью критерия Розенбаума?

3. На двух группах испытуемых — экспериментальной и контрольной — проверяли, вызывает ли небольшая доза алкоголя замедление времени реакции на определенный стимул у людей. Данные исследования представлены в таблице:

№ п.п.	1	2	3	4	5	6	7	8
Время реакции								
экспериментальной группы	140	147	153	160	165	170	171	193
Время реакции контрольной	-		_					
группы	130	135	138	144	148	155	168	

С помощью критерия Манна-Уитни проверить, является ли статистически достоверными различия во времени реакции между испытуемыми экспериментальной группы (приняли алкоголь за 30 минут до эксперимента) и контрольной группы (не принимали алкоголь, по крайней мере, за 24 часа до тестирования) [21].

4. В исследовании изучалась проблема психологических барьеров при обращении в службу знакомств у 17 мужчин и 23 женщин. Испытуемые должны были отметить на отрезке точку, соответствующую интенсивности внутреннего сопротивления, которое им пришлось преодолеть при обращении в службу знакомств. Показатели интенсивности внутреннего

сопротивления при обращении в службу знакомств (в мм) представлены в таблице:

	Муя	счин ы				Ж	енщины		
No	Длина	No	Длина	No	Длина	No	Длина	№	Длина
n.n.	интервала	n.n.	интервала	n.n.	интервала	n.n.	интервала	n.n.	интервала
1	81	11	60	1	70	11	41	21	17
2	80	12	54	2	66	12	40	22	10
3	73	13	54	3	66	13	39	23	9 . 9
4	72	14	43	4	63	14	38		
5	72	15	30	5	63	15	38		177.
6	69	16	26	6	61	16	35		
7	69	17	26	7	60	17	30	1	>.
8	65			8	54	18	27		l.
9	65			9	47	19	25	Y	
10	62			10	43	20	23		

Можно ли утверждать, что при обращении в службу знакомств мужчинам приходится преодолевать субъективно более мощное сопротивление, чем женщинам [27]?

5. На двух группах лабораторных мышей — опытной (n_1 = 9) и контрольной (n_2 = 11) — изучали воздействие на организм нового препарата. После испытаний масса тела животных, выраженная в граммах, варьировала следующим образом:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11
Опытная группа	80	76	75	64	70	68	72	79	83		
Контрольная группа	70	78	60	80	62	68	73	60	71	66	69

С помощью критерия Манна-Уитни определить, является ли статистически достоверной разность в массе у мышей опытной и контрольной групп [21].

6. Используя данные предыдущей задачи с помощью критерия Стьюдента установить, является ли статистически достоверной разность в массе мышей опытной и контрольной групп [21].

7. 30 одиннадцатиклассников (14 юношей и 16 девушек) во время экзаменов протестированы по тесту Спилбергера на уровень реактивной тревожности. Получены следующие результаты:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Юноши	32	34	28	43	35	26	41	32	40	39	42	38	44	33		
Девушки	34	30	37	43	42	44	46	36	45	28	34	41	40	35	42	39

С помощью критерия Розенбаума определить, являются ли статистически достоверными различия уровня реактивной тревожности у юношей и девушек [14].

- 8. С помощью критерия Манна-Уитни определить достоверность различий уровня реактивной тревожности у юношей и девушек по данным предыдущей задачи [14].
 - 9. Решить предыдущую задачу с помощью критерия Стьюдента [14].
- 10. 40 выпускников одной из школ (20 юношей и 20 девушек) обследованы на уровень нейротизма эмоциональной стабильности по тесту Айзенка. Получены следующие результаты:

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10	20
Юноши	10	12	5	9	6	7	11	8	7	4	9	12	14	8	6	7	11	9	10	8
Девушки	5	9	9	13	8	8	10	7	13	11	10	11	10	13	8	10	9 1	16	13	11

Определить достоверность различий по уровню нейротизма у юношей и девушек, с помощью критерия Манна-Уитни [14].

- 11. С помощью критерия Стьюдента опрсделить достоверность различий по уровню нейротизма у юношей и девушек, используя данные предыдущей задачи [14].
- 12. Первоклассники одной из средних школ (12 мальчиков и 10 девочек) были протестированы по детскому тесту Д. Векслера на уровень интеллекта. Результаты тестирования (индивидуальные значения IQ) представлены в таблице:

Испытуемый	Пол	IQ	Испытуемый	Пол	IQ
1	М	85	12	М	91
2	М	78	13	д	115
3	М	138	14	д	112
4	М	86	15	д	98
5	м	79	16	д	93
6	М	105	17	д	97
7	М	95	18	д	101
8	M	94	19	д	117
9	M	100	20	д	102
10	М	134	21	д	92
11	У м	87	22	Д	111

Проанализировать полученные результаты на предмет половых различий в уровне интеллекта детей, выбрав адекватный критерий обработки результатов [14].

Практическое задание. Проверить гипотезу о достоверности различий средних баллов успеваемости за год школьников параллельных классов, используя для этого: а) подходящий непараметрический критерий; б) подходящий параметрический критерий.

ТЕМА 6. ОЦЕНКА ДОСТОВЕРНОСТИ СДВИГА, В ЗНАЧЕНИЯХ ИССЛЕДУЕМОГО ПРИЗНАКА

1. Обоснование задачи исследования изменений

- В психологических исследованиях часто нужно доказать, что в результате действия каких-либо факторов произошли достоверные изменения (сдвиги) в измеряемом показателе. Сдвиг это разность между вторым и первым замерами изучаемой переменной. В зависимости от того, под влиянием какого фактора происходит изменение, выделяют следующие виды сдвигов [27]:
- 1) временной сдвиг сопоставление показателей, полученных по одним и тем же методикам у одних и тех же испытуемых, например сопоставление уровня тревожности у пятиклассников до проведения психологического тренинга и после него;
- 2) ситуационный сдвиг сопоставление показателей, полученных по одним и тем же методикам, но в разных условиях измерения, например сравнение времени, затраченного испытуемыми на решение задачи в обычных условиях, и в условиях шума;
- 3) умозрительный сдвиг сопоставление показателей, измеренных в обычных и воображаемых условиях, например, школьников просят представить, что им сейчас предстоит сдавать экзамен, и измеряют уровень ситуативной тревожности, который затем сравнивают с аналогичным показателем, измеренным в обычной учебной ситуации;
- 4) структурный сдвиг сопоставление между собой разных показателей одних и тех же испытуемых, если они измерены в одних и тех же единицах по одной и той же шкале, например, показатели вербального и невербального интеллекта, измеренного по шкале Векслера.
- 5) сдвиг под влиянием контролируемых или неконтролируемых условий сопоставление замеров, произведенных в экспериментальной группе до и после экспериментального воздействия, а затем сравнение их с аналогичными замерами в контрольной группе, на которую воздействие не оказывалось. Примером таких сдвигов является сопоставление замеров 1 и 3, а также замеров 2 и 4, которые представлены в таблице 10.1, и последующее их сравнение [13, с. 46]:

Таблица 6.1 - Схема психологического исследования

Экспериментальная группа	Контрольная группа
1.Начальный срез	2.Начальный срез
Экспериментальное воздействие есть	Экспериментального воздействия нет
3.Конечный срез	4.Конечный срез

Если статистически достоверный сдвиг есть только в экспериментальной группе, то можно утверждать, что воздействие было эффективным. Если же статистически достоверно диагностирован сдвиг в обеих выборках, но в контрольной он меньше, то необходимо сравнить

сдвиги между собой с помощью методов, позволяющих сопоставить выборки по уровню признака (т.е. сравнить замеры 3 и 4). В случае, если сдвиг в экспериментальной группе статистически достоверно больше сивига контрольной, то можно говорить эффективности воздействия. экспериментального Если контрольной группы эксперименте нет, то можно констатировать, что сдвиг произошел, но нельзя утверждать, что он вызван экспериментальным воздействием.

При измерении сдвига оба замера не обязательно делать на одной и той же выборке. Для этого можно использовать уравновешенные выборки, т.е. выборки, сходные по полу, возрасту, профессии и другим характеристикам, значимым для эксперимента. Например, время решения задачи в условиях шума измеряют на одной подгруппе девятиклассников, а в обычных условиях — на другой, при этом обе подгруппы отобраны из одной группы методом случайного отбора.

Другой вариант уравновешивания — введение параллельных форм теста в тех случаях, когда на результате повторного замера может сказаться эффект научения. Тогда замер до воздействия производят с помощью одной методики, а после воздействия — с помощью другой, измеряющей ту же переменную.

2. Методы выявления достоверности сдвига в значениях исследуемого признака

Для выявления достоверности сдвига в значениях исследуемого признака можно использовать следующие статистические критерии.

2.1 G-критерий знаков [27]

Назначение. Используется для установления общего направления сдвига исследуемого признака: т.е. показывает, в какую сторону изменяются значения признака при переходе от первого измерения ко второму (в сторону повышения (улучшения) или понижения (ухудшения)).

Описание. Критерий применим к признакам, измеренным как количественно, так и качественно. Если количественные сдвиги варьируют в широком диапазоне, лучше использовать критерий Вилкоксона, который определяет не только направление, но и интенсивность сдвигов.

При использовании критерия анализируют три вида сдвигов: типичные, нетипичные, нулевые. *Типичными* называются сдвиги, которые преобладают в исследовании. Сдвиги, противоположные типичным, называются нетипичными. *Нулевыми* называются сдвиги, если реакция испытуемого не изменяется (не повышается и не понижается). Нулевые сдвиги из рассмотрения исключаются. При этом объем выборки п уменьшается на число нулевых сдвигов.

Количество нетипичных сдвигов – это и есть $G_{\scriptscriptstyle 3M\Pi}$. Чем оно меньше, тем более вероятно, что сдвиг в типичном направлении статистически достоверен.

Ограничения:

1) 5 < n < 300.

Гипотезы:

Н₀: преобладание типичного сдвига является случайным.

Н₁: преобладание типичного сдвига не является случайным. Алгоритм:

- 1. Вычислить разность в каждой паре значений («после» «до»).
- N3EIIIOBS 2. Подсчитать количество нулевых слвигов и исключить рассмотрения.
- 3. Определить преобладающее направление изменений. подсчитав количество типичных сдвигов. Сформулировать статистические гипотезы.
- 4. Подсчитать количество нетипичных сдвигов. Это и есть эмпирическое значение критерия С
- 5. Определить критическое значение критерия $G_{\kappa p}$ для данного объема выборки (за вычетом нулевых сдвигов) (Приложение 4). Если $G_{\text{вип}} \leq G_{\text{кр}}$ при уровне значимости р ≤ 0,05, то Н₀ отвергается, сдвиг в типичную сторону достоверно преобладает. Если $G_{\text{эмп}} > G_{\text{ко}}$, то H_0 принимается.

G-критерий является *исключением* из общего правила принятия решения о достоверности различий: сдвиг в типичном направлении статистически достоверен, если $G_{\text{эмп}} \leq G_{\text{кр}}$.

В случае равенства числа типичных и нетипичных сдвигов G-критерий знаков неприменим [9].

Пример 1 [9]. Психолог проводит групповой тренинг с целью снижения уровня тревожности. С помощью теста Тейлора он дважды выявляет уровень тревожности у 14 участников до и после проведения тренинга. Пользуясь результатами исследования, представленными в таблице, выяснить, был ли проведенный тренинг эффективным.

Решение. Результаты эксперимента представим в виде таблицы, в которой произведем необходимые расчеты:

N₂	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Уровень 🕜	R													
тревожности до	30	39	35	34	40	35	22	22	32	23	16	34	33	34
тренинга														
Уровень								_						-
тревожности	34	39	26	33	34	40	25	23	33	24	15	27	35	37
после тренинга														
Сдвиг («после» - до»)	+	0	-		-	+	+	+	+	+	-	-	+	+

Как видно из таблицы, число нулевых сдвигов $n_{0}=1$, число положительных сдвигов $n_{+}=8$, число отрицательных сдвигов $n_{-}=5$. Следовательно, типичными будут положительные сдвиги.

Сформулируем статистические гипотезы:

Н₀: преобладание положительных сдвигов является случайным.

 H_1 : преобладание положительных сдвигов не является случайным.

Нетипичными являются отрицательные сдвиги. Их число и есть эмпирическое значение G-критерия: $G_{\scriptscriptstyle 3M\Pi}$ =5.

По таблице Приложения 4 находим критические значения G-критерия для объема выборки, уменьшенного на число нулевых сдвигов: n-1=4-1=13

$$G_{\kappa p} = \int 3$$
, при $p \le 0.05$;

Ъ, при р≤ 0,01.

Тогда $G_{\text{эмп}} > G_{\text{кр}}$ при уровне значимости $p \leq 0.05$. Следовательно, H_0 принимается, преобладание положительных сдвигов является случайным, т.е. тренинг не привел к существенным изменениям в уровне тревожности испытуемых.

3.2 Т-критерий Вилкоксона [27].

Назначение. Применяется для сопоставления показателей, измеренных в двух разных условиях на одной и той же выборке. Позволяет установить не только направленность, но и выраженность изменений, т.е. интенсивность сдвига в определенном направлении.

Описание. Критерий является более мощным, чем критерий знаков. Он основан на ранжировании абсолютных величин сдвигов и сопоставлении сумм рангов положительных и отрицательных сдвигов. Если сдвиги в положительном или отрицательном направлении происходят случайно, то эти суммы рангов примерно равны. Как и в критерии знаков, из рассмотрения исключаются нулевые сдвиги, а объем выборки уменьшается на их число.

Ограничения:

1) данные представлены в ранговой шкале или в количественных шкалах и варьируют в достаточно широком диапазоне (в противном случае используют критерий знаков);

2)
$$5 \le n \le 50$$
.

Гипотезы:

 H_0 : интенсивность сдвигов в типичном направлении не превосходит интенсивности сдвигов в нетипичном направлении.

 H_1 : интенсивность сдвигов в типичном направлении превосходит интенсивность сдвигов в нетипичном направлении.

Алгоритм:

- 1. Вычислить разность между значениями в паре («после» «до»).
- Подсчитать количество нулевых сдвигов и исключить их из рассмотрения.
- Определить преобладающее направление изменений, подсчитав количество типичных сдвигов. Сформулировать статистические гипотезы.
 - 4. Записать абсолютные величины разностей.
- 5. Проранжировать абсолютные величины разностей по принципу «меньшему значению меньший ранг». Проверить правильность вычисления рангов.
 - 6. Подсчитать сумму рангов нетипичных сдвигов. Это и есть

эмпирическое значение критерия Тэмп.

7. Определить критическое значение критерия $T_{\kappa p}$ для данного объема выборки (за вычетом нулевых сдвигов) (Приложение 5). Если $T_{\scriptscriptstyle 3M\Pi} \leq T_{\kappa p}$ при уровне значимости р = 0.05, то H_0 отвергается, интенсивность сдвига в типичную сторону достоверно больше. Если $T_{\scriptscriptstyle 3M\Pi} > T_{\kappa p}$, то H_0 принимается.

Т-критерий Вилкоксона также является *исключением* из общего правила принятия-отвержения нулевой гипотезы: сдвиг в типичном направлении статистически достоверен, если $T_{\text{эмп}} \le T_{\text{кр}}$.

Пример 2 [13]. В кабине самолета изменили эргономическую среду, что привело к изменению времени выполнения определенной задачи пилотом. В исследовании были сделаны замеры в двух разных условиях у 10 летчиков. Выяснить, привело ли изменение эргономической среды к изменению времени решения задачи пилотами.

Решение. Результаты эксперимента представим в виде таблицы и произведем в ней расчеты в соответствии с алгоритмом Т-критерия Вилкоксона:

····							7.			
No	1	2	3	4	5	6	7	8	9	10
Начальные показатели времени решения задачи	52	55	47	62	58	58	44	57	61	63
Конечные показатели времени решения задачи	51	60	41	68	58	55	40	49	52	68
Разность («после» - до»)	-1	+5	-6	+6	0	-3	-4	-8	-9	+5
Абсолютное значение разности	1	(3)	6	6	0	3	4	8	9	5
Ранг разности	1	4,5	6,5	6,5	-	2	3	8	9	4,5

Определим преобладающее направление сдвигов, проанализировав табличные данные: число нулевых сдвигов $n_0=1$, число положительных сдвигов $n_+=3$, число отрицательных сдвигов $n_-=6$. Следовательно, типичными будут отрицательные сдвиги.

Сформулируем статистические гипотезы:

 H_0 : интенсивность отрицательных сдвигов не превосходит интенсивности положительных сдвигов.

H₁: интенсивность отрицательных сдвигов превосходит интенсивности положительных сдвигов.

Проведем ранжирование абсолютных значений разности, не учитывая нулевой сдвиг. Проверим правильность ранжирования:

$$\sum_{i=1}^{n} R_i = 1 + 4,5 \times 2 + 6,5 \times 2 + 2 + 3 + 8 + 9 = 1 + 9 + 13 + 2 + 3 + 8 + 9 = 45.$$

По формуле для вычисления суммы рангов при n=9 получаем:

$$\sum_{i=1}^{n} R_{i} = n \times (n+1):2=9 \times (9+1):2=45.$$

Поскольку нетипичными являются положительные сдвиги, выделим

их ранги жирным шрифтом и подсчитаем сумму рангов. Это и есть эмпирическое значение Т-критерия:

$$T_{\text{amp}} = 4,5+6,5+4,5=15,5.$$

По таблице Приложения 5 находим критические значения Т-критерия для объема выборки, уменьшенного на число нулевых сдвигов:

$$T_{\kappa p} = \int 8$$
, при $p \le 0.05$;

принимается, преобладание отрицательных сдвигов является случайным. т.е. изменение эргономической среды не привело к изменению времени решения задачи пилотами.

3.3 t-критерий Стьюдента для зависимых выборок [12,13]

Назначение. Используется для оценки достоверности сдвига в зависимых выборках.

Описание. Это параметрический критерий, который является более мощным, чем критерий Вилкоксона и дает достоверные результаты, даже если выборки малы. Он основывается на вычислении разности между значениями в парах данных.

Ограничения:

- 1) данные измерены в количественных шкалах;
- 2) распределение признака в обеих выборках соответствует закону нормального распределения.

Гипотезы.

Но: сдвиг между показателями начального и конечного срезов недостоверен.

Н₁: сдвиг между показателями начального и конечного срезов достоверен.

Алгоритм:

- 1. Вычислить разность между значениями в каждой паре («после» «до»), обозначив полученную величину d_i.
 - 2. Вычислить сумму полученных разностей Σd_i.
- 3. Возвести все разности в квадрат и вычислить сумму квадратов разностей Σd_i^2 .
 - 4. Вычислить эмпирическое значение t-критерия по формуле:

$$t_{\text{2MM}} = \frac{\sum d_i}{\sqrt{\frac{n\sum d_i^2 - (\sum d_i)^2}{n-1}}}, \text{где } n - \text{объем выборки.}$$

- 5. Найти число степеней свободы по формуле v = n-1.
- 6. По таблице Приложения 3 определить критические значения критерия $\mathbf{t}_{\mathtt{kn}}$ для соответствующего числа степеней свободы v. Если $|\mathbf{t}_{\mathtt{kn}}| \geq \mathbf{t}_{\mathtt{kn}}$ при уровне значимости р ≤ 0.05 , то H_0 отвергается. Если $|t_{\text{эмп}}| < t_{\text{кр}}$, то H_0 принимается.

Пример 3 [13]. В начале учебного года у группы десятиклассников был измерен уровень интеллекта. Через год при помощи параллельной методики у этих же школьников снова измерили уровень интеллекта. Можно ли утверждать, что за год обучения интеллектуальный уровень учащихся значимо изменился?

Решение. Представим результаты исследования в виде таблицы и произведем в ней необходимые расчеты в соответствии с алгоритмом t-критерия Стьюдента:

№ 1 2 3 4 5 6 7 0 0

No	1	2	3	4	5	6	7	8	9	10	11	12
Начальный срез	100	102	105	120	110	106	109	115	115	114	111	125
Конечный срез	116	102	114	122	119	116	100	121	118	124	119	121
d _i	16	0	9	2	9	10	-9	6	3	10	8	-4
d_i^2	256	0	81	4	81	100	81	36	9	100	64	16

Сформулируем статистические гипотезы:

 H_0 : сдвиг между показателями начального и конечного срезов недостоверен.

 H_1 : сдвиг между показателями начального и конечного срезов достоверен.

Вычислим сумму разностей значений в парах:

 $\Sigma d_i = 16 + 0 + 9 + 2 + 9 + 10 + (-9) + 6 + 3 + 10 + 8 + (-4) = 60.$

Вычислим сумму квадратов разностей:

 $\Sigma d_i^2 = 256 + 0 + 81 + 4 + 81 + 100 + 81 + 36 + 9 + 100 + 64 + 16 = 828.$

Вычислим $t_{_{\rm ЭМП}} = \Sigma d_i / \sqrt{[(n \cdot \Sigma d_i^2 - (\Sigma d_i)^2)/(n-1)]} = 60 / \sqrt{[(12 \cdot 828 - (60)^2)/(12-1)]} = 60 / \sqrt{[(9936 - 3600)/11]} = 60 / \sqrt{[6336/11]} = 60 / \sqrt{576} = 60/24 = 2,5.$

Определим число степеней свободы: v = n-1=12-1=11. По таблице Приложения 7 находим критические значения t-критерия для числа степеней свободы v=11:

$$t_{\text{кp}} = 5,20$$
, при $p \le 0,05$; $3,11$, при $p \le 0,01$.

Тогда $|t|_{3M\Pi}$ ткр при уровне значимости р**4**0,05. Следовательно, H_0 отклоняется и принимается H_1 сдвиг между показателями начального и конечного срезов достоверен, т.е. за год обучения интеллектуальный уровень школьников значимо изменился.

Если экспериментатору необходимо сравнить более трех выборок по уровню исследуемого признака, то можно сопоставить исследуемые выборки с помощью Т-критерия Вилкоксона попарно. В случае трех выборок сопоставить выборки 1 и 2, 1 и 3, 2 и 3.

Задания для самостоятельной работы

1. Психолог проводит тренинг, целью которого является снижение уровня тревожности. Уровень тревожности участников (в баллах) представлен в таблице:

№ п.п.	1	2	3	4	5	6	7	8	9	10
Тревожность до тренинга	30	39	35	34	40	35	22	22	32	23
Тревожность после тренинга	34	39	26	33	34	40	25	23	33	24

С помощью критерия знаков выяснить, был ли эффективным данный вариант тренинга [21].

2. Получив отрицательный результат, психолог внес в содержание тренинга соответствующие коррективы. Он предположил, что улучшенный вариант тренинга позволяет снижать уровень тревожности испытуемых. Для проверки гипотезы он увеличил выборку испытуемых. Уровень тревожности участников (в баллах) представлен в таблице:

№ п.п.	Тревожность до тренинга	Тревожность после тренинга
1.	24	22
2.	12	12
3.	40	23
4.	30	31
5.	40	32
6.	35	24
7.	40	40
8.	32	12
9.	40	22
10.	24	21
11.	33	30
12.	38	26
13.	39	38
14.	25	23
15.	28	22
16.	36	22
17.	37	36
18.	32	38
19.	25	25

С помощью критерия Вилкоксона выяснить, был ли эффективным данный вариант тренинга [9].

- **3.** Используя данные задачи 2, проверить эффективность тренинга с помощью критерия Стьюдента [9].
- **4.** С помощью критерия Вилкоксона проверить, выросли ли оценки лидерских качеств участников специального тренинга руководителей. Оценки тринадцати испытуемых, измеренные по соответствующему тесту

до и после тренинга, представлены в таблице [21]:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13
Оценки лидерских	40	38	42	25	29	26	16	18	8	4	7	3	5
качеств до тренинга													
Оценки лидерских	47	43	36	38	30	22	25	21	14	12	5	9	5
качеств после				i									ı
тренинга													

5. Группе десятиклассников перед прохождением тренинга было предложено протестироваться с помощью методики САН (самочувствие, активность, настроение). После тренинга этим же школьникам предложили пройти повторное тестирование по этой же методике. Результаты приведены в таблице. Можно ли утверждать, что работа на тренинге помогла учащимся улучшить свое функциональное состояние? Визуальный анализ данных позволяет утверждать, что сдвиг показателей действительно имел место. Но насколько достоверен этот сдвиг? Для выполнения здания использовать критерий Стьюдента [13].

								10 1		
№ п.п.	1	2	3	4	5	6	7	8	9	10
До тренинга	150	180	122	143	125	170	167	161	148	180
После тренинга	168	184	129	147	134	178	165	162	150	184

6. В группе педагогов был проведен тренинг креативного мышления. Перед тренингом (x_i) и после него (y_i) были проведены тестовые срезы по параллельным формам теста $\ddot{\mathbf{U}}$. Ниссинен и \mathbf{G} . Воутилайнена, позволяющего выявить творческий потенциал личности. Данные срезов сведены в таблицу.

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12
x_{i}	19	26	18	15	29	21	21	18	21_	23	14	10
y _i	17	20	20	18	30	25	28	19	20	27	19	13

Определить результативность тренинга с помощью критерия Вилкоксона [13].

7. У 15 пациентов неврологической клиники измерялся уровень реактивной тревожности до (x_i) и после (y_i) соответствующего психотерапевтического воздействия. Получены следующие результаты:

-	№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Xi	46	48	54	43	47	51	48	50	49	57	41	48	53	42	48
1	\mathcal{Y}_{i}	43_	44	56	40	48	49	52	45	48	53	38	43	52	40	49

Определить эффективность психотерапевтического воздействия, используя критерий знаков и критерий Вилкоксона [14].

8. Психолог проводит с младшими школьниками работу по развитию свойств внимания, используя для оценки результатов методику «Корректурная проба». У 19 школьников было определено количество ошибок до проведения коррекционно-развивающих занятий и после них. Данные представлены в таблице. Уменьшилось ли количество ошибок

внимания у младших школьников после занятий с психологом?

No	Количество ошибок до занятий	Количество ошибок после занятий
п.п.	24	22
2.	12	12
3.	42	41
4.	30	31
5.	40	32
6.	55	44
7	50	50
8.	52	32
9.	50	32
10.	22	21
11.		34
12.	78	56
13.	79	78
14.	25	23
15.	28	22
16.	16	12
17.	17	16
18.	12	18
19.	25	25

Определить эффективность коррекционно-развивающей работы, используя критерий знаков [9].

- 9. Используя данные предыдущей задачи, проверить эффективность коррекционно-развивающей работы с помощью критерия Вилкоксона и критерия Стьюдента [9].
- 10. Аспирант решил проверить, происходит ли личностный рост у студентов-психологов в результате многочисленных тренингов, включенных в учебную программу. Для этого он измерил эмпатию и коммуникабельность (от 0 до 100 баллов) у студентов на первом курсе, а затем у этих же студентов на пятом курсе:

№ п.п.	11/1	1-й курс	5-й курс		
712 11.11.	Эмпатия	Коммуникабельность	Эмпатия	Коммуникабельность	
Ī	25	67	23	68	
2	37	56	39	55	
3	68	45	78	40	
4	45	66	44	65	
5	15	55	20	50	
6	59	44	29	49	
7	51	46	51	49	
8	48	38	56	37	
9	89	37	78	30	
10	39	87	40	88	

С помощью критерия знаков и критерия Вилкоксона проверить, произошли ли изменения в эмпатии и коммуникабельности у студентов за время учебы [21].

11. Шесть студенток решили сесть на диету, чтобы похудеть. KAllemobs Результаты представлены в таблице:

№ п.п.	1	2	3	4	5	6
Вес до диеты	81	82	69	69	77	90
Вес после диеты	78	80	65	68	71	80

Была ли диета эффективным средством похудения [25]?

12. В ходе проверки эффективности тренинга каждому из восьми членов группы дважды задавался вопрос «Насколько часто твое мнение совпадает с мнением группы?»: до проведения тренинга (x_i) и после тренинга (y_i) . Для ответов использовалась 10-балльная шкала: 1 — никогда, ..., 5 - в половине случаев, ..., 10 - всегда. Данные представлены в таблице:

№ п.п.	1	2	3	4	5	6	7	8
Xi	3	6	5	2	7	3	4	5
$y_{\rm i}$	4	6	6	4	6	4	5	6

С помощью критерия Стьюдента проверить гипотезу о том, что в результате тренинга самооценка конформизма участников изменилась [18].

13. Физическая подготовка девяти спортсменов проверена при поступлении в спортивную школу (x_i) и через неделю тренировок (y_i) . При уровне значимости 0,05 проверить, значимо ли улучшилась физическая подготовка спортсменов в предположении, что: а) число нормально; б) распределение баллов распределено ОТ нормального [7].

		. 1/								
ſ	№ п.п.	17.	2	3	4	5	6	7	8	9
ľ	Xi	76	71	57	49	70	69	26	65	59
ſ	y _i O	81	85	52	52	70	63	33	83	62

Практическое задание. Проверить гипотезу о достоверности сдвига показателей, полученных у учащихся класса с помощью методики САН (самочувствие, активность, настроение) перед началом занятий и после их окончания, используя для этого: а) подходящий непараметрический критерий; б) подходящий параметрический критерий.

ТЕМА 7. ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В РАСПРЕДЕЛЕНИИ ПРИЗНАКА

1. Обоснование задачи сравнения распределений признака [27]

Все распределения признака делятся на две большие группы: эмпирические — полученные в результате исследования и теоретические — полученные в результате теоретического анализа, например нормальное или равномерное распределения. Необходимость анализа различий в распределениях признаков может возникнуть у психолога в двух ситуациях:

- 1) при сопоставлении эмпирического распределения с теоретическим, если: а) надо установить, подчиняется ли полученное в исследовании распределение закону нормального распределения, например, для выбора статистического критерия (параметрического или непараметрического); б) при определении соответствия эмпирического распределения равномерному, например, при исследовании вопроса о предпочтении определенного вида задач, товаров;
- 2) при сравнении двух эмпирических распределений, которые могут различаться по средним значениям, по дисперсиям, по асимметрии, по эксцессу, либо по сочетаниям перечисленных параметров. Это позволяет подтвердить или опровергнуть гипотезу научного исследования.

2. Методы выявления различий в распределениях признака: χ^2 - критерий Пирсона

В математической статистике для определения расхождения или согласия распределений чаще всего используется χ^2 -критерий Пирсона [27].

Назначение. Применяется в двух случаях: 1) для сопоставления эмпирического распределения признака с теоретическим (равномерным, нормальным); 2) для сопоставления двух, трех и более эмпирических распределений одного и того же признака.

Описание. Позволяет ответить на вопрос, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределении или в двух и более эмпирических распределениях. Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ^2 . При полном совпадении распределений $\chi^2_{\text{пит}} = 0$.

Возможны следующие варианты сопоставления:

- вариант 1: эмпирическое распределение сравнивается с теоретическим распределением;
- вариант 2: эмпирическое распределение 1 сравнивается с эмпирическим распределением 2;
- вариант 3: эмпирическое распределение 1 сравнивается с эмпирическим

распределением 2 и с эмпирическим распределением 3 и т.д.

Ограничения:

- 1) измерение может быть проведено в любой шкале;
- 2) выборки должны быть случайными и независимыми;
- 3) объем выборки должен быть достаточно большим ($n \ge 20 [9]$, $n \ge 30 [27]$), поскольку точность критерия повышается при больших n;
- 4) теоретическая частота для каждого разряда должна быть не менее пяти: $f_{\tau} \ge 5$. Если число разрядов k задано, то минимальное количество наблюдений определяется по формуле: $n_{min} = k \cdot 5$;
- выбранные разряды должны исчерпывать весь диапазон вариативности признаков и не должны пересекаться.

Гипотезы:

 H_0 : эмпирическое распределение 1 не отличается от эмпирического распределения 2 (или от теоретического распределения).

 H_1 : эмпирическое распределение 1 отличается от эмпирического распределения 2(или от теоретического распределения)..

Алгоритм:

- 1. Занести в таблицу наименования разрядов (первый столбец) и соответствующие им эмпирические частоты f_9 (второй столбец).
- 2. Вычислить соответствующие теоретические частоты \mathbf{f}_{r_0} вписать их в третий столбец.
- 3. Вычислить разность между эмпирическими и теоретическими частотами по каждому разряду f_3 - f_{13} записать их в четвертый столбец.
- 4. Вычислить квадраты разностей частот по каждому разряду $(f_3 f_7)^2$, записав их в пятый столбец.
- 5. Разделить полученные квадраты разностей на теоретическую частоту $(f_3 f_7)^2$: f_7 и записать результаты в шестой столбец.
- 6. Просуммировать частные, полученные в шестом столбце. Полученная сумма и есть эмпирическое значение критерия: $\chi^2_{\text{амн}} = \sum_{i=1}^n \frac{(f_{3i} f_{ji})^2}{f_{-}}$.
 - 7. Определить число степеней свободы:
- а) при сравнении эмпирического распределения с теоретическим: v = k-1, где k- число разрядов;
- б) при сравнении двух (и более) эмпирических распределений: $v = (k-1)\cdot(c-1)$, где k число строк, c число столбцов в таблице кросс-табуляции.
- 8. Определить χ_{xp}^2 по таблице Приложения 6 для полученного числа степеней свободы.
- 9. Если $\chi^2_{_{3,MR}} \ge \chi^2_{_{KP}}$, то H_0 отвергается, т.е. сравниваемые распределения достоверно отличаются. Если $\chi^2_{_{3,MR}} < \chi^2_{_{KP}}$, то H_0 принимается.

Рассмотрим несколько примеров решения задач с использованием χ^2 -

критерия Пирсона.

Случай 1. Сравнение эмпирического распределения с теоретическим (равномерным). В этом случае для расчета теоретической частоты по каждому разряду сумму частот по всем разрядам делят на количество разрядов.

Пример 1 [9]. В эксперименте испытуемый должен выбрать здание на правом или левом столе. В инструкции подчеркивают, что задания на обоих столах одинаковы. Из 150 испытуемых правый стол выбрали 98 человек, а левый — 52. Можно ли утверждать, что полученное распределение отличается от равномерного?

Решение. Сформулируем статистические гипотезы:

 H_0 : полученное распределение выбора стола с заданием не отличается от равномерного.

 H_1 : полученное распределение выбора стола с заданием отличается от равномерного.

Для проверки согласованности эмпирического распределения с равномерным построим таблицу, в которой произведем необходимые расчеты, предварительно определив теоретическую частоту и число степеней свободы.

При равномерном распределении правый и левый стол должны выбрать одинаковое количество человек. Тогда $f_r = (98+52):2=150:2=75$.

Признак принимает всего два значения, т.е. число разрядов равно двум. Тогда число степеней свободы равно v = k-1=2-1=1.

Альтернативы вы	бора стола	f_3	f _r	$f_3 - f_T$	$(f_3-f_7)^2$	$(f_3-f_7)^2$: f_7
Правый	65	98	75	23	529	7,05
Левый	. 10.	52	75	-23	529	7,05
Сумма	\mathcal{O}_{A_i}	150	150	0		14,1

В соответствии с алгоритмом, сумма значений, представленных в шестом столбце, и есть эмпирическое значение критерия: $\chi^2_{\text{aver}} = 14,10$.

По таблице Приложения 18 находим критические значения χ^2 -критерия для числа степеней свободы $\nu=1$:

$$\chi^2_{\text{кр}} = 3,841$$
, при p $\leq 0,05$;
6,635, при p $\leq 0,01$.

Тогда $\chi^2_{sun} > \chi^2_{sp}$ при уровне значимости p = 0.01. Следовательно, H_0 отклоняется и принимается H_1 , распределение признака отлично от равномерного, т.е. испытуемые статистически значимо предпочитают выбирать задание на правом столе.

Примечание. Производя расчеты, необходимо всякий раз убеждаться, что сумма разностей между эмпирическими и теоретическими частотами (четвертый столбец) равна нулю. Если это условие не выполняется, это

означает, что в предыдущих вычислениях допущена ошибка. Необходимо ее устранить, прежде чем переходить к дальнейшим вычислениям [27].

Случай 2. Сравнение двух эмпирических распределений.

В этом случае для расчета теоретической частоты по каждому разряду используют следующую формулу [27]:

 $f_{_{\text{3M9}}} = \frac{(\text{сумма частот по соответствующей строке}) \times (\text{сумма частот по соответствующему столбцу})}{\text{общая сумма частот}}$

Соответствующими строкой и столбцом будут та строка и тот столбен, на пересечении которых находится данная ячейка таблицы.

Пример 2 [13]. Во время проведения социологического опроса старшеклассникам было предложено выбрать один из трех профилей обучения (математический, естественнонаучный, гуманитарный). Среди опрошенных были юноши и девушки. Результаты опроса сведены в таблицу кросс-табуляции размером 2х3.

Пол респондентов	Профиль обучения					
	математический	естественнонаучный	гуманитарный			
Юноши	18	10	3			
Девушки	10	9	15			

Отличаются ли распределения предпочтений профиля обучения у юношей и девушек?

Решение. Сформулируем статистические гипотезы:

 H_0 : распределения предпочтений профиля обучения у юношей и девушек не отличаются.

 H_i : распределения предпочтений профиля обучения у юношей и девушек отличаются.

Для того чтобы воспользоваться χ^2 – критерием, необходимо подсчитать суммы частот по строкам и столбцам в таблице данных. В результате исходная таблица примет следующий вид:

Пол	Профиль обучен	Профиль обучения					
респондентов	математический	естественнонаучный	гуманитарный	по строкам			
Юноши	18	10	3	31			
Девушки	10	9	15	34			
Сумма частот	28	19	18	65			
по столбцам							

Вычислим число степеней свободы для таблицы кросс-табуляции размером 2x3 по формуле $v=(k-1)\cdot(c-1)=(2-1)\cdot(3-1)=1\cdot 2=2$.

Построим таблицу для вычисления эмпирического значения критерия и произведем в ней необходимые расчеты:

Выбор профиля	f ₃	f _r	$f_3 - f_r$	$(f_3-f_1)^2$	$(f_3 - f_r)^2 : f_r$
Юноши – математематический	18	31.28:65 = 13,35	4,65	21,59	1,62
Юноши – естественнонаучный	10	31.19:65 = 9,06	0,94	0,88	0,10
Юноши – гуманитарный	3	31.18:65 = 8,58	-5,58	31,19	3,63
Девушки – математематический	10	34.28:65 = 14,65	-4,65	21,59	1,47
Девушки – естественнонаучный	9	34·19:65 = 9.94	-0,94	0,88	0,09
Девушки – гуманитарный	15	34.18:65 = 9,42	5,58	31,19	3,31
Сумма	65		0		10,22

При помощи таблицы критических значений (таблица Приложения 6) сравниваем полученное эмпирическое значение с критическим для числа степеней свободы v = 2:

$$\chi^2_{\text{кp}} = 5,992$$
, при p \leq 0,05; 9,211, при p \leq 0,01.

Тогда $\chi^2_{_{2MR}} > \chi^2_{_{RD}}$ при уровне значимости р=0,01 Следовательно, H_0 отклоняется и принимается Н₁, распределения предпочтений профиля обучения у юношей и девушек значимо отличаются.

Задания для самостоятельной работы

1. В группе школьников исследовался вопрос о предпочтении одного из четырех видов напитков. Каждому испытуемому было предложено выбрать один из четырех напитков. Данные опроса сведены в таблицу:

Pepsi cola	Coca cola	Sprite	Seven Up
10	140	6	8

Можно ли утверждать, что один из напитков является более популярным среди школьников, чем другие? Ответ обосновать с помощью χ^2 -критерия Пирсона [13].

2. Среди группы учащихся проводился опрос с целью определения рейтинга педагогов. Опрашиваемые должны были назвать самого компетентного учителя. Данные опроса сведены в таблицу:

Предмет А	Предмет В	Предмет С	Предмет D	Предмет Е
10	5	3	8	9

Можно ли утверждать, что кто-то из педагогов достоверно значимо оценивается как менее компетентный [13]?

3. П. Бенсон и его коллеги изучали, как влияет физическая привлекательность на желание помочь. Было установлено количество юношей, которые помогли в определенной ситуации привлекательной и непривлекательной девушке:

	Де	Всего	
	привлекательная	непривлекательная	Beero
Помогли	52	35	87
Не помогли	62	71	133

С помощью χ^2 -критерия Пирсона проверить гипотезу о том, что внешняя привлекательность девушек влияет на желание юношей им помочь [21].

Miemors 4. Получив столь интересные результаты, П. Бенсон посмотреть, помогут ли девушки привлекательным и непривлекательным юношам в аналогичной ситуации:

	IO		
	привлекательный	непривлекательный	Всего
Помогли	17	13	30
Не помогли	24	27	51

Влияет ли внешняя привлекательность юношей на желание девушек помочь им в затруднительной ситуации [21]?

- 5. Исследователь предположил, что число людей, обладающих одним четырех основных типов темперамента (холерики, сангвиники, флегматики и меланхолики) приблизительно одинаково. Для проверки этой гипотезы он провел тестирование 100 испытуемых с помощью опросника Айзенка. Тип темперамента испытуемых определялся по соотношению показателей экстраверсии и нейротизма. Было получено следующее распределение: холерики - 22 человека, сангвиники - 36, флегматики - 13 и меланхолики - 29 человек. Является ли распределение испытуемых по типам темперамента равномерным [14]?
- 6. Одинаков ли уровень подготовленности учащихся в двух школах, если в первой школе из 100 выпускников в вуз поступили 82, а во второй из 87 человек поступили в вуз 44 [14]?
- 7. Исследователь предположил, что экстраверты чаще становятся начальниками, а интроверты довольствуются должностями подчиненных. Для проверки предположения он собрал данные у 550 человек. Из 200 начальников 125 были экстравертами, а 75 – интровертами. Из 350 подчиненных 225 оказались экстравертами, а 125 - интровертами. С помощью д1-критерия Пирсона определить, зависит ли занимаемая должность от направленности личности [21].
- 8. В двух школах района психолог выяснял мнения учителей об организации психологической службы в школе. Учителя давали ответы по номинальной шкале - довольны или не довольны. Результаты опроса представлены в таблице:

	Довольны	Не довольны	Сумма
Учителя 1-ой школы	15	5	20
Учителя 2-ой школы	7	8	15

В одинаковой ли степени педагоги двух школ удовлетворены работой психологической службы школы [14]?

- 9. В 1998 году в Нижнем Тагиле окончили школы с золотыми медалями 14 человек (5 юношей и 9 девушек), с серебряными 26 человек (8 юношей и 18 девушек). Можно ли утверждать: а) что девушки получают золотые медали чаще, чем юноши? б) что девушки получают серебряные медали чаще, чем юноши [14]?
- 10. Из 50 опрошенных по поводу отношения к введению моратория на смертную казнь 30 были «за», 20 «против». Предполагается, что выборка репрезентативна. Можно ли утверждать, что количество сторонников превышает количество противников введения моратория на смертную казнь [18]?
- 11. С целью предсказания результатов выборов исследовалось предпочтение потенциальными избирателями пяти политических лидеров. По результатам опроса репрезентативной выборки из 120 респондентов была составлена таблица распределения предпочтений:

Политические лидеры	1	2	3	4 5	Bcero
Количество	21	27	20	15 10	120
предпочтений	21	31	29	13 10	120

Проверить, отличается ли распределение предпочтений от равномерного распределения с помощью χ^2 -критерия Пирсона [18].

12. Накануне выборов для каждого респондента репрезентативной выборки были определены: а) пол; б) один из пяти предпочитаемых политических лидеров:

Политические лидеры	1	2	3	_ 4	5	Всего
Количество предпочтений в мужской выборке	5	25	10	8	3	51
Количество предпочтений в женской выборке	11	12	19	5	7	54

- С помощью χ^2 -критерия Пирсона определить, зависят ли политические предпочтения от пола [18].
- 13. В двух школах района выяснялся уровень подготовки учащихся девятых классов по математике. Для этого в 9-х классах была проведена контрольная работа и случайным образом в каждой школе были отобраны работы 50 учащихся. Результаты исследования представлены в таблице:

Баллы	2	3	4	5	Всего
Количество учащихся 1-ой школы	3	19	18	10	50
Количество учащихся 2-ой школы	9	24	12	5	50

Существует ли статистически достоверная разница в уровне подготовки по математике девятиклассников двух школ [9]?

14. Психолог сравнивает два эмпирических распределения, в каждом из которых было обследовано 200 человек по тесту интеллекта. Данные исследования представлены в таблице:

Количество баллов	60	70	80	90	100	110	120	130	140	Сумма
Количество испытуемых	1	5	17	45	70	51	10	1	0	200
1-ой выборки										
Количество испытуемых	1	3	7	22	88	69	7	2	1	200
2-ой выборки					ŀ			l	l	

Проверить, различаются ли между собой эти распределения с помощью χ^2 – критерия Пирсона [9].

15. Психолог проводит исследование с целью выяснить, влияет ли уровень интеллекта на профессиональные достижения. Для решения этой задачи 90 человек были оценены по уровню их профессиональных достижений (ниже среднего, средний, выше среднего) и по уровню интеллекта (ниже среднего, средний, выше среднего). Эмпирические данные представлены в таблице:

	Уровень проф	Сумма		
Уровень интеллекта:	ниже среднего	средний	выше среднего	
ниже среднего	20	5	5	30
средний	5	15	10	30
выше среднего	5	20	5	30

Существуют ли достоверные различия в уровне профессиональных достижений у испытуемых, имеющих разный уровень интеллекта [9]?

Практическое задание. Изучить вопрос о предпочтении выпускниками одного из экзаменов. Проверить: а) отличается ли распределение предпочтений экзаменов у учащихся от равномерного распределения; б) существуют ли достоверные различия в распределениях предпочтений экзаменов у школьников параллельных классов.

ТЕМА 8. ИССЛЕДОВАНИЕ ВЗАИМОСВЯЗИ ПРИЗНАКОВ

1. Понятие о корреляции. Корреляционная связь и корреляционная зависимость

При проведении психологических исследований в ряде случаев важно знать, какова зависимость между изменением двух или более признаков; изменяются ли эти признаки самостоятельно, независимо друг от друга, или изменение одного признака связано с изменением другого. Существует две категории связей между признаками: функциональные и корреляционные (статистические) [12].

При функциональных связях каждому значению одной переменной соответствует одно определенное значение другой переменной. Такие зависимости наблюдаются в точных науках (математике, физике). Например, между радиусом окружности R и ее длиной l существует функциональная зависимость $l=2\pi\times R$, т.е. каждому значению R соответствует строго определенное значение l. Функциональная связь имеет место по отношению к каждому отдельному наблюдению. Корреляционная связь проявляется лишь в среднем для совокупности наблюдений.

При определении понятия «корреляция» (от латинского – correlation – соотношение, связь, зависимость) используют термины «корреляционная связь» и «корреляционная зависимость».

Корреляционная связь рассматривается как согласованные изменения двух или нескольких признаков. Это означает, что изменчивость одного признака находится в некотором соответствии с изменчивостью другого, которое может быть обусловлено множеством различных причин, т.е. эти два признака могут зависеть от некоторого третьего признака или сочетания признаков, не рассматриваемых в данном исследовании.

Например, исследуется взаимосвязь между курением (X) и низкими оценками у студентов (Y). Возможны следующие ситуации:

- никотин плохо влияет на деятельность мозга, в результате курящие студенты получают худшие оценки $(X \Rightarrow Y)$;
- студенты, получающие худшие оценки, волнуются и поэтому больше курят $(Y\Rightarrow X)$,
- хуже учатся и больше курят общительные студенты, которые любят общаться, развлекаться. Общительность (Z) мешает им учиться, и они чаще курят за компанию (Z \Rightarrow X и Y).

Таким образом, корреляционная связь не рассматривается как причинно-следственная связь между признаками.

Корреляционная зависимость — это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака, т.е. это причинно-следственная связь. Например, связь между возрастом испытуемых и количеством воспроизводимых слов, которые предъявляют им для запоминания.

Учитывая, что термин «корреляционная зависимость» подразумевает влияние одной переменной на другую, исследователю корректнее использовать более нейтральный термин «корреляционная связь».

2. Классификация корреляционных связей

При изучении корреляции стараются установить, существует ли связь между двумя признаками, измеренными на одной выборке (например, уровнем интеллекта и успеваемостью школьников) или между признаками, измеренными на разных выборках (например, между уровнем интеллекта детей и образованием родителей). Если эта связь существует, то стремятся выяснить, как изменение одного признака связано с изменением другого.

Если при увеличении (уменьшении) одного признака X увеличивается (уменьшается) другой признак Y, то говорят о *положительной или прямой корреляции* ($X\uparrow Y$ или $X\downarrow \downarrow Y$).

Если при увеличении одного признака X уменьшается другой признак Y, то говорят об *отрицательной или обратной корреляции* $(X\uparrow\downarrow Y)$ или $X\downarrow\uparrow Y$.

В случае качественных признаков положительная корреляция обозначает, что присутствие одного признака совпадает с присутствием другого, а отрицательная корреляция — что присутствие одного признака совпадает с отсутствием другого.

Степень взаимосвязи между признаками и ее направление характеризует *коэффициент* корреляции, который обозначают г. Величина коэффициента корреляции может варьировать в пределах от -1 до +1, т.е. $-1 \le r \le +1$.

Корреляционные связи можно классифицировать по различным основаниям (по направлению, по форме, по силе).

По направлению выделяют [27]:

- положительную корреляцию, если коэффициент корреляции имеет положительный знак: $0 \le r \le +1$;
- отрицательную корреляцию, если коэффициент корреляции имеет отрицательный знак: $-1 \le r \le 0$.

Корреляционные связи классифицируют также по форме. Выделяют два вида связей [27]:

— прямолинейная корреляционная связь, например связь между количеством тренировок на тренажере и количеством правильно решенных задач при контрольном тестировании. В этом случае графически связь можно представить в виде прямой линии (рис. 7.1):

Кол-во решенных задач

1088

Рис. 7.1 – Схема прямолинейной корреляционной связи

- криволинейная корреляционная корреляционная связь, например связь между уровнем мотивации и эффективностью выполнения задачи (закон Йеркса-Додсона). В этом случае связь можно

представить графически в виде кривой, которая вначале возрастает (до оптимального значения мотивации), а затем начинает убывать (рис. 7.2).

Рис. 7.2 – Графическое представление криволинейной корреляционной связи

Это означает, что при повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается максимальная эффективность выполнения задачи, соответствующая оптимальному значению мотивации, после чего дальнейшему повышению мотивации сопутствует снижение эффективности [27, с. 202].

Корреляционные связи классифицируют по силе (тесноте) [27]:

- 1) r < 0,19 очень слабая связь;
- 2) 0.20 < r < 0.0.29 слабая;
- 3) 0.30 < r < 0.49 умеренная,
- 4) 0.50 < r < 0.69 средняя;
- 5) r > 0,70 сильная (тесная).

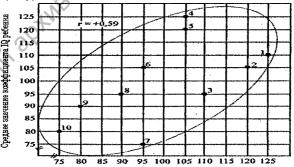
Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Например: а) взаимосвязь между количеством выкуриваемых сигарет и вероятностью заболеть раком легких r=+0.94 — сильная положительная связь, т.е. чем больше сигарет человек выкуривает, тем больше у него шансов заболеть раком легких; б) взаимосвязь между количеством выкуриваемых сигарет и оценками у студентов r=-0.8204 — сильная отрицательная связь, т.е чем больше сигарет выкуривает студент, тем ниже у него оценки [21].

Корреляционная связь между двумя признаками считается достоверной, если она достигает уровня статистической значимости р≤0,05, полученного при проверке нулевой гипотезы Н₀ о равенстве нулю коэффициента корреляции между измеряемыми признаками. При этом может оказаться, что при малом объеме выборки сильная корреляция будет недостоверной, а при больших объемах выборки корреляция - достоверной. Чем больше объем выборки, тем меньшей величины коэффициента корреляции оказывается достаточно, чтобы корреляция была признана достоверной.

Не имеет смысла анализировать статистически незначимую связь [18].

3. Наглядное представление корреляционных связей


Смысл корреляции можно проиллюстрировать графически с помощью диаграммы рассеяния. Для этого в прямоугольной системе координат по оси абсцисс откладывают значения одной из коррелирующих между собой переменных (X), по оси ординат — значения другой переменной (Y). Затем стоят точки с координатами (x_i ; y_i), где x_i и y_i — соответствующие значения коррелирующих переменных X и Y [8].

Пример 1[8]. По данным о среднем значении коэффициента IQ родителей (супружеской пары) и среднем значении коэффициента IQ их детей построить диаграмму рассеяния:

№ п.п.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Среднее значение коэффициента IQ родителей (X)	125	120	110	105	105	110	105	95	125	120
Среднее значение коэффициента IQ детей(Y)	110	105	95	125	120	105	75	95	90	80

Решение. Построим систему координат. По оси абсцисс будем откладывать среднее значение коэффициента IQ родителей, по оси абсцисс — среднее значение коэффициента IQ детей. Построим точки с координатами $(x_1;y_1)$, $(x_2;y_2)$,..., $(x_{10};y_{10})$. Тогда первая точка будет иметь координаты (125; 110), вторая — (120; 105) и т.д.

В результате получим следующую диаграмму рассеяния (рис. 7.3), где каждая точка помечена числом, соответствующим порядковому номеру данных в таблице (при практическом построении диаграммы рассеяния точки обычно не нумеруют).

3 Lekibohh,

Средное значение коэффициента IQ родителей Рис. 7.3 – Диаграмма рассеяния для данных примера 1

Представленные на диаграмме рассеяния данные могут быть вписаны в геометрическую фигуру, имеющую форму эллипса. По направлению его осей и форме можно судить о направлении и силе корреляционной связи

между переменными [8]:

- если большая ось эллипса ориентирована в направлении с югозапада на северо-восток, то это говорит о положительной корреляции; если же ось направлена с северо-запада на юго-восток — корреляция отрицательная;
- чем уже эллипс (т.е. чем меньше его малая ось при одной и той же величине большой оси), тем больше сила корреляционной связи. Если малая ось эллипса равна нулю, то эллипс превращается в отрезок, что соответствует полной корреляции ($r=\pm 1$). Если же большая ось эллипса становится равной малой оси, эллипс превращается в окружность, что свидетельствует об отсутствии корреляции (r=0). Случаи, иллюстрирующие схематическое представление силы и направления корреляции, представлены на рис. 7.4 [8, с.69]:

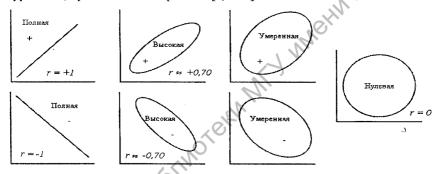


Рис. 7.4 – Графическое представление корреляционных связей различной силы и направления

4. Меры связи для качественных переменных

Приемы для измерения меры корреляции различны для количественных и качественных переменных. Для установления меры связи между качественными признаками чаще всего используют коэффициент ранговой корреляции Спирмена [27].

Назначение. Позволяет определить силу и направление корреляционной связи между двумя признаками или между двумя иерархиями признаков.

Описание. Для подсчета ранговой корреляции необходимо иметь два ряда значений, которые могут быть проранжированы. Такими рядами могут быть:

- два признака, измеренные на одной и той же группе испытуемых; например коэффициент IQ и успеваемость у учащихся класса;
- две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков; например иерархия ценностей по методике Р. Рокича.

Ограничения:

1) данные получены в порядковой шкале, но могут быть измерены

отношений, также шкале интервалов или равных затем проранжированы;

2) объем выборки удовлетворяет условию $5 < n \le 40$;

Гипотезы:

не отличается от нуля.

.... (между иерархиями X и Y) Н₁: корреляция между переменными X и Y (между иерархиями X и Y) оверно отличается от нуля. Алгоритм: достоверно отличается от нуля.

- 1. Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как X и Y, внести их в первый и второй столбец таблицы.
- 2. Проранжировать значения переменной X, начисляя ранг наименьшему значению, занести ранги в третий столбец таблицы.
- 3. Проранжировать значения переменной У по тем же правилам. Занести ранги в четвертый столбец таблицы.
- 4. Подсчитать разности d между рангами X и Y по каждой строке таблицы и занести их в пятый столбец.
- 5. Возвести каждую разность в квадрат: d². Эти значения занести в шестой столбец таблицы.
 - 6. Подсчитать сумму квадратов $\sum d^2$
 - 8. Рассчитать коэффициент ранговой корреляции r_s по формуле:

$$\int_{s} -1 - \frac{6 \times \sum d^2}{n(n^2 - 1)}$$

где n – количество ранжируемых испытуемых или признаков.

9. Определить по таблице критических значений для данного n и соответствующего уровня значимости р критическое значение коэффициента корреляции r_{sкp.} (Приложение 7). Если эмпирическое значение превышает критическое или равно ему $(r_s \ge r_{skp})$, то корреляция достоверно отличается от нуля при соответствующем уровне значимости p.

Пример 2 [21]. Продавец мороженного интересуется, есть ли связь между температурой воздуха и количеством пачек мороженого, купленных у него в ларьке. Данные, собранные в течение недели, занесены в первые три столбца представленной ниже таблицы.

Решение. Определим, есть ли связь с помощью коэффициента корреляции Спирмена.

Сформулируем статистические гипотезы.

Н₀: корреляция между температурой воздуха и количеством пачек мороженого, купленных в течение недели в ларьке, не отличается от нуля.

Н₁: корреляция между температурой воздуха и количеством пачек мороженого, купленных в течение недели в ларьке, достоверно отличается от нуля.

Построим таблицу для вычисления промежуточных значений:

Проранжируем данные по каждой переменной отдельно и занесем их в соответствующие столбцы таблицы.

Найдем разность рангов d и возведем каждое значение разности в квадрат. Найдем сумму квадратов разностей рангов, сложив все числа в последнем столбие.

День	Температура	Количество	Ранг Х	Ранг Ү	Разность	Квадрат
недели	воздуха, С°	купленных пачек			рангов d	разности
	(X)	мороженого (Ү)				рангов d ²
Пн.	7	1	2	1	1	17/2
Вт.	4	3	1	_ 2	-1	1
Cp.	13	5	4	3	1	.1
Ч _{Т.}	16	7	5	4	1	1
Пт.	10	9	3	5	-2	4
C6.	22	11	7	6	1	1
Bc.	19	13	6	7	-1/1	1
					$\Sigma d = 0$	$\Sigma d^2 = 10$

Воспользуемся формулой $r_s=1-[6\times\Sigma d^2/n(n^2-1)]$.

Подставим полученные данные в формулу:

$$r_s=1-[6\times10/7(7^2-1)]=1-[60/7\times48]=1-60/336=1-0,178\approx0,82.$$

Определим значимость коэффициента корреляции Спирмена, найдя $\mathbf{r}_{\mathsf{skp}}$ с помощью таблицы критических значений (Приложение 7):

$$r_{s kp} = \begin{cases} 0.78 & \text{при } p \le 0.05; \\ 0.94 & \text{при } p \le 0.01. \end{cases}$$

Тогда r_s > r_{skp} при уровне значимости р≤0,05. Следовательно, H_0 отвергается, H_1 — принимается, т.е. между температурой воздуха и количеством пачек мороженого, купленных в течение недели в ларьке, существует достоверная связь. Эта связь положительная $(r_s$ >0) и сильная $(r_s$ >0,70).

Показателем правильности вычисления разности рангов является сумма разности рангов, которая всегда должна быть равна нулю: $\sum d^2 = 0$.

Критерий Спирмена можно использовать и в случае, если число сравниваемых переменных п>40. При этом критические значения определяются по таблице для критерия Пирсона при числе степеней свободы, равном п [9].

5. Меры связи для количественных переменных

Для установления меры связи между количественными признаками чаще других используют коэффициент линейной корреляции Пирсона г., [9].

Назначение. Позволяет определить силу и направление корреляционной связи между двумя признаками.

Описание. Для подсчета линейной корреляции необходимо иметь два ряда значений, между которыми существует прямолинейная связь.

Для вычисления коэффициента линейной корреляции \mathbf{r}_{xy} используются три метода: метод «сырых» данных, метод средних отклонений, метод

стандартных отклонений. Наиболее часто используемым является метод средних отклонений. Для расчетов коэффициента линейной корреляции при этом используют следующую формулу:

$$r_{xy} = \frac{\sum (x_i - \overline{x}) \times (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \times \sum (y_i - \overline{y})^2}},$$

 $\sqrt{x} = x^{2} \times \sum_{i=1}^{N} \sqrt{x} = \sum_{i=1}^{N} \sqrt{y} = \sum_{i=1}^{N} \sqrt{$

- шкале 1) сравниваемые переменные должны быть измерены интервалов или равных отношений;
 - 2) распределения признаков X и Y должны быть близки к нормальному;
 - 3) оцениваются не менее пяти пар значений: n≥5;
- 4) коэффициент линейной корреляции нечувствителен к криволинейным связям.

Гипотезы:

H₀: корреляция между переменными X и Y не отличается от нуля.

Н₁: корреляция между переменными X и Y достоверно отличается от нуля.

Алгоритм:

- 1. Вычислить входящие в формулу величины, для удобства занося промежуточные результаты в соответствующую таблицу.
- 2. Подставить данные в формулу и вычислить эмпирическое значение коэффициента линейной корреляции Пирсона r_{xv}.
 - 3. Определить число степеней свободы по формуле v=n-2.
- 4. По таблице критических значений для данного у и соответствующего уровня значимости р определить критическое значение коэффициента корреляции $r_{xy kp}$ (Приложение 8).
- 6. Сравнить эмпирическое и критическое значения критерия. Если эмпирическое значение превышает критическое или равно ему $(r_{xy} \ge r_{xy, sp})$, то корреляция достоверно отличается от нуля при уровне значимости р.

Пример 3 [21]. Продавец мороженного интересуется, есть ли связь между температурой воздуха и количеством пачек мороженого, купленных у него в ларьке. Данные, собранные в течение недели, занесены в первые три столбца представленной ниже таблицы.

Решение. Определим, есть ли связь с помощью коэффициента линейной корреляции Пирсона. Воспользуемся методом средних отклонений.

Сформулируем статистические гипотезы.

Н₀: корреляция между температурой воздуха и количеством пачек мороженого, купленных в течение недели в ларьке, не отличается от нуля.

Н₁: корреляция между температурой воздуха и количеством пачек мороженого, купленных в течение недели в ларьке, достоверно отличается от нуля.

Построим таблицу для вычисления промежуточных значений:

День недели	Температура воздуха, С° (X)	Количество пачек мороженого (Y)	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	y _i - \bar{y}	$(y_i - \overline{y})^2$	$(x_i - \overline{x}) \times (y_i - \overline{y})$
Пн.	7	1	-6	36	-6	36	36
Br.	4	3	-9	81	-4	16	36
Ср.	13	5	0	0	-2	4	0
Чт.	16	7	3	9	0	0	0
Пт.	10	9	-3	9	2	4	-6
Сб.	22	11	9	81	4	16	36
Bc.	19	13	6	36	6	36	36
n=7	$\sum x_i = 91$,	$\Sigma y_i = 49$,		Σ=252		Σ=112	Σ=138
	$\overline{x} = 13$	$\overline{y} = 7$					

Подставим полученные результаты в формулу:

 $r_{xy}=[\Sigma(x_i-x)\times\Sigma(y_i-y)]/[\sqrt{\Sigma(x_i-x)^2}\times\Sigma(y_i-y)^2]=138/\sqrt{(252)\times(112)}=138/168\approx0,82.$

Определим число степеней свободы: v=n-2=7-2=5.

Определим значимость коэффициента корреляции Пирсона, найдя r_{xy} кр с помощью таблицы критических значений:

$$r_{xy kp} = \begin{cases} 0.754, \text{ при } p \le 0.05; \\ 0.874, \text{ при } p \le 0.01. \end{cases}$$

Тогда r_{xy} > r_{xykp} при уровне значимости р \leq 0,05. Следовательно, H_0 отвергается, H_1 — принимается, т.е. между температурой воздуха и количеством пачек мороженого, купленных в течение недели в ларьке, существует достоверная положительная сильная связь.

Задания для самостоятельной работы

- **1.** Какой из представленных ниже коэффициентов корреляции показывает самую сильную связь? Самую слабую связь? [21]?
 - а) -0,89 б) 0,32; в) 0,58; г) 0,91.
- **2.** Какой из представленных ниже коэффициентов корреляции показывает обратную связь, прямую связь [21]?
 - а) -0,89 б) 0,32; в) 0,58; г) 0,91.
 - 3. Указать ошибку в величине коэффициента корреляции [21]:
 - а) 0,89 б) 1,32; в) 0,058; г) 0,91.
- **4.** Для каждого из представленных ниже наборов данных построить диаграмму рассеяния. Какая диаграмма представляет: нелинейную связь; положительную корреляционную связь; отсутствие корреляционной связи; отрицательную корреляционную связь [21]?

	a) _																
Ì	X	1,5	1,0	1,0	1,5	1,5	2,0	2,5	2,5	3,0	3,0	3,5	3,5	4,0	4,0	4,5	5,0
	Y	0,5	0,5	2,0	1,5	2,0	2,0	2,5	3,2	2,5	3,5	3,5	4,5	3,5	4,5	4,5	5,0

6)															
X	0,5	0,5	1,0	1,5	1,5	2,0	2,5	2,5	3,0	3,0	3,5	3,5	4,0	4,0	5,0
Y	5,0	4,5	3,5	4,0	2,5	3,0	2,0	-	2,5	2,0	2,0	2,5	1,5	0,7	0,5

	в)																	
1	X	0,5	1,0	1,0	1,5	1,5	2,0	2,0	2,5	3,0	3,5	3,5	3,5	4,0	4,0	4,5	5,0	5,0
	Y	0,5	1,0	1,5	2,5	3,5	2,5	3,5	4,5	3,5	3,0	2,5	2,0	2,5	2,0	1,0	1,0	0,5

r)																		
																		4,5	
Г	Y	1,0	2,5	4,5	3,5	1,0	2,5	4,0	1,0	2,0	3,5	4,5	1,0	1,0	3,5	3,5	4,5	2,5	1,0

7. В группе из десяти студентов было проведено сравнительное исследование между показателями нейротизма (по тесту Айзенка) и тревожности (по методике Тейлора):

Тревожность	19	11	44	28	17	49	37	32	29	45
Нейротизм	7	9	11	14	14	17_	18	18	19	22

Построить диаграмму рассеяния для данных исследования. Вычислить коэффициент ранговой корреляции между исследуемыми признаками [13].

6. Для каждого из 12 учащихся одного класса известно время решения тестовой арифметической задачи в секундах и средний балл отметок по математике (по пятибалльной системе) за последнюю четверть:

Время решения задачи	122	105	100	145	130	90	162	172	120	150	170	112
Средний балл	4,7	4,5	4,4	3,8	3,7	4,6	4,0	4,2	4,1	3,6	3,5	4,8

Вычислить коэффициент ранговой корреляции между исследуемыми признаками, определить уровень его статистической значимости и дать интерпретацию [18].

7. Два преподавателя X и Y оценили знания 12 учащихся по стобалльной системе и выставили им следующие оценки:

Баллы Х	98	94	88	80	76	70	63	61	60	58	56	51
Баллы Ү	99	91	93	74	78	65	64	66	52	53	48	62

Найти коэффициент ранговой корреляции Спирмена между оценками двух преподавателей [6].

8. Вычислить коэффициент ранговой корреляции Спирмена между показателями абстрактной и конкретной памяти, полученными в результате диагностики 10 испытуемых [13]:

Абстрактная память	47	44	43	42	40	39	39	39	37	35
Конкретная память	30	25	27	25	24	21	20	14	25	19

9. Супруги X и Y проранжировали 8 жизненных ценностей по степени предпочтения. Данные представлены в таблице:

Ценности	Ранги Х	Ранги Ү
Здоровье	1	1
Любовь	2	3
Богатство	4	3
Свобода	4	3
Мудрость	4	5.
Познание	6	7
Развитие	7	7
Творчество	8	7

16IIIOBE Определить согласованность предпочтений супругов с помощью коэффициента ранговой корреляции Спирмена [18].

10. На выборке из семи человек было проведено сравнительное исследование уровня интеллектуальной ригидности и уровня интеллекта:

Показатели интеллектуальной ригидности	22	28	39	33	31	34	15
Уровень интеллекта	120	110	112	115	118	104	116

Вычислить коэффициент линейной корреляции между исследуемыми признаками, определить уровень его статистической значимости [13].

11. Вычислить значение коэффициента линейной корреляции между показателями роста (в см) и веса (в кг) у группы учащихся:

						l				
Рост	159	160	172	160	171	163	164	166	175	170
Bec	47	49	65	57	68	50	59	68	63	54

Определить уровень статистической значимости коэффициента и дать интерпретацию [13].

12. Вычислить значение коэффициента линейной корреляции между показателями вербального и невербального интеллекта у 20 учащихся 8-го класса:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Вербальный IQ	13	9	8	9	7	9	8	13	11	12	8	9	10	10	12	10	8	9	10	11
Невербальный IQ	12	11	8	12	9	11	9	13	9	10	9	8	10	12	10	10	11	10	11	13

Определить уровень статистической значимости коэффициента и дать интерпретацию [18].

13. Исследователь выдвинул гипотезу о том, что общая тревожность уменьшается, когда человек курит. С помощью коэффициента линейной корреляции Пирсона проверить правильность гипотезы [21]:

№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Уменьшение тревожности (в %)	14	8	9	2	4	0	15	22	7	9	3	1	14	6	2	4	7	8	11	6
Количество сигарет, выкуренных перед повторным тестированием	6	3	21	0	3	4	9	9	4	3	0	6	12	3	1	7	4	2	9	7.

Практическое задание. Проверить гипотезу о наличии взаимосвязи между коэффициентом интеллектуальности учащихся класса и средним баллом четвертной успеваемости, используя для этого: а) коэффициент ранговой корреляции Спирмена; б) коэффициент линейной корреляции Пирсона.

Приложение 1

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ О-КРИТЕРИЯ РОЗЕНБАУМА

(Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2006) Различия между двумя выборками можно считать достоверными, если $Q_{\tiny \tiny 3M\Pi} \ge Q_{\tiny 0,05}$, и тем более достоверными, если $Q_{\tiny \tiny 3M\Pi} \ge Q_{\tiny 0,01}$.

															Y	
n	11	12	13_	14	15	16	17	18	19	20	21	22	23	24	25	26
							<i>F</i>	=0,0.	5							
11	6												$V_{k,j}$			
12	6	_6_			٠								2,			
13	6	6	6									1/2				
14	7	7	6	6												
15	7	7	6	_6	_6_					_	1					
16	8	7	7	7	6	6)					
17	7	7	7	7	7	7_	7		4			l			L	
18	7	7	7	7	7	7	7	7		,						
19	7	7	7	7	7	7	7	7	7							
20	7	7	7	7	7	7	7	70	7	7						
21	8	7	. 7	7	7	7	7	7	7	7	7					
22	8	7	7_	7	7	7	7	27	7	7	7	7				
23	8	8	7	7	7	7	7	7	7	7	7	7	7			
24	8	8	8	8	8	8	8	8	8	8	7	7	7	7		
25	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7	
26	8	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7
					Ø			=0,0	1							
11	9			1												
12	9	9														
13	9	9	9													
14	9	9	9	9											i	
15	9	9	9	9	9											
16	9	9	9	9	9	9										
17	10	9	9	9	9	9	9									
18	10	10	9	9	9	9	9	9								
19	10	10	10	9	9	9	9	9	9							
20	10	10	10	10	9	9	9	9	9	9						
21	- 11	10	10	10	9	9	9	9	9	9	9			·		
22	11	11	10	10	10	9	9	9	9	9	9	9		T		
23	11	11	10	10	10	10	9	9	9	9	9	9	9			
24	12	11	11	10	10	10	10	9	9	9	9	9	9	9		
25	12	11	11	10	10	10	10	10	9	9	9	9	9	9	9	
26	12	12	11	11	10	10	10	10	10	9	9	9	9	9	9	9
·													•			

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ U-КРИТЕРИЯ МАННА-УИТНИ

(Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2006) Различия между двумя выборками можно считать достоверными, если $U_{\text{эмп}} \le U_{0,05}$, и тем более достоверными, если $U_{\text{эмп}} \le U_{0,01}$

Name									1 -		T	1	T							0
3	n_1	2	3	4	5	6	7	8	9	10				14	_15	16	17	18	19	20
4 - 0 1 - 0 1 2 4 -											E	<u>=0,</u>	05						.(-	1,
S 0 1 2 4 4 4 5 6 0 2 3 5 7 7 0 2 4 6 8 11 3 5 7 1 4 6 9 12 15 18 21 1 4 6 9 12 15 18 21 1 1 4 7 11 14 17 20 24 27 11 1 5 8 12 16 19 23 27 31 34 2 1 4 6 9 12 12 26 30 34 38 42 33 37 42 47 51 4 4 7 11 16 21 26 31 36 41 46 51 55 66 61 1 1 1 3 7 12 18 23 28 33 39		<u> -</u>	_		<u> </u>							_							1	· J
6 0 2 3 5 7 0 2 4 6 8 11 8 1 3 5 8 10 13 15 0 0 1 4 6 9 12 15 18 21 0 0 1 4 7 11 14 7 11 14 7 11 14 7 11 14 7 11 14 7 11 14 7 11 14 7 11 14 7 11 16 9 12 22 31 34 42 4 13 12 26 10 15 19 24 28 33 37 42 47 51 4 1 2 2 5 9 13 17 21 26 31 36 41 46 51 55 61 66 72 2 3 39 45			_			<u></u>					_							0		
The image is a content of the image is a c	5	0															-			
8 1 3 5 8 10 13 15	_6	0	2	3	5							ĺ					/	7		
9		0	2			8	11													
10		1														X	-			
11 1 5 8 12 16 19 23 27 31 34	9	1	4	6	9	12	15					П		П		10			ι	
12	10	1_		7	11										. 1	1.				
12	11	1		8	12	16	19		27	31	34			١	1					
13	12			9		17	21	26	30	34	38		<		5					
14 3 7 11 16 21 26 31 36 41 46 51 56 61 <t< td=""><td>13</td><td></td><td>6</td><td>10</td><td>15</td><td></td><td>24</td><td>28</td><td>33</td><td>37</td><td>42</td><td>47</td><td>51</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	13		6	10	15		24	28	33	37	42	47	51							
15	14		7		16	21		31	36	41		51	56	61						
16 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83	15	3	7	12	18	23	28	33	39	44	50	55	61		72					
17 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96	16	3	8	14	19	25	30	36		48	54	60	65		77	83				
18	17	3	9	15		26	33	39	45	51	57	64	70	77	83	89	96			
19	18	4	9	16	22	28	35	41	48	55		68	75	82	88	95	102	109		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	4	10	17	23				51	58		72					109	_	123	
p=0,01 5 - - 0 1 0 <td>20</td> <td>4</td> <td>11</td> <td>18</td> <td>25</td> <td></td> <td>107</td> <td>115</td> <td></td> <td>_</td> <td>138</td>	20	4	11	18	25											107	115		_	138
5 - - 0 1 0							1	$\overline{}$												
6 - - 1 2 3 -	5	-	-	0	1	(D),				<u> </u>	<u> </u>								$\neg \neg$
7 - 0 1 3 4 6 9 - 1 8 . 0 2 4 6 7 9 	6	-	-	1		3			_				_							\neg
8 . 0 2 4 6 7 9 .	7	-	0	1		4	6		-											
9 - 1 3 5 7 9 11 14 - - - - 1 3 6 8 11 13 16 19 - - - - - 1 4 7 9 12 15 18 22 25 - <t< td=""><td>8</td><td></td><td>0</td><td>2</td><td></td><td>6</td><td>7</td><td>9</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\neg</td></t<>	8		0	2		6	7	9			_									\neg
10 - 1 3 6 8 11 13 16 19 <	9	_	_			7	9	11	14	_		l "					•			\neg
11 - 1 4 7 9 12 15 18 22 25 8 11 14 17 21 24 28 31 8 9 12 16 20 23 27 31 35 39 9 9 12 16 20 23 27 31 35 39 9 9 12 16 20 23 27 31 35 39 9 9 12 16 20 23 27 31 35 39 9 9 12 16 20 23 27 31 35 39 9 9 12 16 20 23 27 31 35 39 9 9 12 18 18 23 18 23 28 33 37 42 47 51 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 5	10		ı.			8				19										
12 - 2 5 8 11 14 17 21 24 28 31 <t< td=""><td>11</td><td>-</td><td>7</td><td></td><td>7</td><td></td><td>12</td><td></td><td></td><td></td><td>25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>$\neg \neg$</td></t<>	11	-	7		7		12				25							-		$\neg \neg$
13 0 2 5 9 12 16 20 23 27 31 35 39	12	7	2	5		11						31			_					$\overline{}$
14 0 2 6 10 13 17 22 26 30 34 38 43 47		0							23		31		39				-			\dashv
15 0 3 7 11 15 19 24 28 33 37 42 47 51 56 16 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 17 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 18 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 19 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101				_	_							38		47						
16 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 17 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 18 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 19 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101	_			-											56	$\neg \neg$		_		$\neg \neg$
17 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 18 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 19 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101									31				51			66				
18 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 19 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101				-				28	33	38							77			
19 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101			_	$\overline{}$								53						88		
		-																	101	
20 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114								34	40											114

nı	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
n ₂				· · · ·		_			p=0						<u> </u>			-1
21	. 19	26	34	41	49	57	65	73	81	89	97	105	113	121	130	138	146	154
22	20	28	36	44	52	60	69	77	85	94	102	111	119	128	136	145	154	162
23	21	29	37	46	55	63	72	81	90	99	107	116	125	134	143	152	161	170
24	22	31	39	48	57	66	75	85	94	103	113	122	131	141	150	160	169	179
25	23	32	41	50	60	69	79	89	98	108	118	128	137	147	157	167	177	187
26	24	33	43	53	62	72	82	93	103	113	123	133	143	154	164	174	185	195
27	25	35	45	55	65	75	86	96	107	118	128	139	150	160	171	182	193	203
28	26	36	47	57	68	79	89	100	111	122	133	144	156	167	178	189	200	212
29	27_	38	48	59	70	82	93	104	116	127	139	150	162	173	185		208	220
30	28	39	50	62	73	85	96	108	120	132	144	156	168	180	192	204	216	228
31	29	41	52	64	76	88	100	112	124	137	149	161	174	186	199	211	224	236
32	30	42	54	66	78	91	103	116	129	141	154	167	180	193	206	219	232	245
33	31	43	56	68	81	94	107	120	133	146	159	173	186	199	213	226	239	253
34	32	45	58	71	84	97	110	124	137	151	164	178	192	206	219	233	247	261
35	33	46	59	73	86	100	114	128	142	156	170	184	198	212	226	241	255	269
36	35	48	61	75_	89	103	117	132	146	160	175	189	204	219	233	248	263	278
37	36	49	63	77	92	106	121	135	150	165	180	195	210	225	240	255	271	286
38	37	51	65	79	94	109	124	139	155	170	185	201	216	232	247	263	278	294
39	38	52	67	82	97	112	128	143	159	175	190	206	222	238	254		286	302
40	39	53	69	84	100	115	131	147	163	179	196	212	228	245	261	278	294	311
L									0,01									
21	10	16	22	29	35	42	49	56	63	70	77	84	91	98	105	113	120	127
22	10	17	23	30	37	45	52	59	66	74	81	89	96	104	111	119	127	134
23	11	18	25	32	39	47	55	62	70	78	86	94	102	109	117	125	133	141
24	12	19	26	34	42	49	57	66	74	82	90	98	107	115	123	132	140	149
25	12	20	27	35	44	52	60	69	77	86	95	103	112	121	130	138	147	156
26	13	21	29	37	46	54	63	72	81	90	99	108	117	126	136	145	154	163
27	14	22	30	39	48	57	66	75	85	94	103	113	122	132	142	151	161	171
28	14	23	32	41	50	59	69	78	88	98	108	118	128	138	148	158	168	178
29	15	24	33	42	52	62	72	82	92	102	112	123	133	143	154	164	175	185
30	15	25	34	44	54	64	75	85	95	106	117	127	138	149	160	171	182	192
31	16	26	36	46	56	67	77	88	99	110	121	132	143	155	166	177	188	200
32	17	27	37	47	58	69	80	91	103	114	126	137	149	160	172	184	195	207
33	17	28	38	49	60	72	83	95	106	118	130	142	154	166	178	190	202	214
34	18	29	40	51	62	74	86	98	110	122	134	147	159	172	184	197	209	222
35	19	30	41	53	64	77	89	101	114	126	139	152	164	177	190	203	216	229
36	19	31	42	54	. 67	79	92	104	117	130	143	156	170	183	196	210	223	236
37	20	32	44	56	69	81	95	108	121	134	148	161	175	189	202	216	230	244
38	21	33	45	58	71	84	97	111	125	138	152	166	180	194	208		237	251
39	21	34	46	59	73	86	100	114	128	142	157	171	185	200	214	229	244	258
40	22	35	48	61	75	89	103	117	132	146	161	176	191	206	221	236	251	266_

nı	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
n ₂										=0,0	5							_	
21																	T	Γ	Γ
22	171																	1	
23	180	189									-								2
24	188	198	207																O.
25	197	207	217	227															7
26	206	216	226	237	247					(ļ —					O	
27	214	225	236	247	258	268											1)		
28	223	234	245	257	268	279	291				_					J	77		
29	232	243	255	267	278	290	302	314											
30	240	252	265	277	289	301	313	326	338							λ.			
31	249	261	274	287	299	312	325	337	350	363					7				
32	258	271	284	297	310	323	336	349	362	375	389								
33	266	280	293	307	320	334	347	361	374	388	402	415							
34	275	289	303	317	331	345	359	373	387	401	415	429	443						
35	284	298	312	327	341	356	370	385	399	413	428	442	457	471					
36	292	307	322	337	352	367	381	396	411	426	441	456	471	486	501				
37	301	316	332	347	362	378	393	408	424	439	454	470	485	501	516	531			
38	310	325	341	357	373	388	404	420	436	452	467	483	499	515	531	547	563		
39	318	335	351	367	383	399	416	432	448	464	481	497	513	530	546	562	579	595	
40	327	344	360	377	394	410	427	444	460	477	494	511	527	544	561	578	594	611	628
L									<i>p</i> =	0,01									
21									2	И.						<u> </u>			
22	142								(2)										
23	150	158						~			<u></u>	_						<u> </u>	ļ!
24	154	166	174					S											
25	165	174	183	192				1.		Ĺ									
26	173	182	191	201	210														
27	180	190	200	209	2!9	229			L_										
28	188	198	208	218	229	239	249												ļ
29	196	206	217	227	238	249	259	270											
30	203	214	225	236	247	258	270	281	292								ļ		
31	211	223	234	245	257	268	280	291	303	314									
32	219	231	242	254	266	278	290	302	314	326	338		L						
33	227	239	251	263	276	288	300	313	325	337	350	362							
34	234	247	260	272	285	298	311	323	336	349	362	375	387	L	<u> </u>			ļ	ļ
35	242	255	268	281	294	308	321	334	347	360	374	387	400	413			<u> </u>		
36	250	263	277	290	304	318	331	345	358	372	386	399	413	427	440			<u> </u>	<u> </u>
37	258	271	285	299	313	327	341	355	370	384	398	412	426	440	454	468		L	
38	265	280	294	308	323	337	352	366	381	395	410	424	439	453	468	482	497		ļ
39	273	288	303	317	332	347	362	377	392	407	422	437	452	467	482	497	512	527	
40	281	296	311	326	342	357	372	388	403	418	434	449	465	480	495	511	526	542	557

n ₁	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
n ₂									p=0	,05								
41	40	55	70	86	102	118	135	151	168	184	201	218	234	251	268	285	302	319
42	41	56	72	88	105	121	138	155	172	189	206	223	240	258	275	292	310	327
43	42	58	74	91	107	124	142	159	176	194	211	229	247	264	282	300	318	335
44	43	59	76	93	110	128	145	163	181	199	216	235	253	271	289	307	325	344
45	44	61	78	95	113	131	149	167	185	203	222	240	259	277	296	315	333	352
46	45	62	80	97	115	134	152	171	189	208	227	246	265	284	303	322	341	360
47	46	64	81	100	118	137	156	175	194	213	232	251	271	290	310	329	349	369
48	47	65	83	102	121	140	159	178	198	218	237	257	277	297	317	337	357	377
49	48	66	85	104	123	143	163	182	202	222	243	263	283	303	324	344	365	385
50	49	68	87	106	126	146	166	186	207	227	248	268	289	310	331	352	372	393
51	50	69	89	109	129	149	170	190	211	232	253	274	295	316	338	359	380	402
52	51	71	91	111	131	152	173	194	215	237	258	280	301	323	345	366	388	410
53	52	72	92	113	134	155	177	198	220	241	263	285	307	329	352	374	396	418
54	53	74	94	115	137	158	180	202	224	246	269	291	313	336	359	381	404	427
55	54	75	96	118	139	161	184	206	228	251	274	297	319	342	365	389	412	435
56	55	76	98	120	142	164	187	210	233	256	279	302	326	349	372	396	420	443
57	57	78	100	122	145	167	191	214	237	261	284	308	332	355	379	403	427	451
58	58	79	102	124	147	171	194	218	241	265	289	314	338	362	386	411	435	460
59	59	81	103	127	150	174	198	222	246	270	295	319	344	369	393	418	443	468
60	60	82	105	129	153	177	201	225	250	275	300	325	350	375	400	426	451	476
									p = 0.0	\overline{I}								
41	23	36	49	63	77	91	106	121	136	151	166	181	196	211	227	242	258	273
42	23	37	50	65	79	94	109	124	139	155	170	186	201	217	233	249	265	280
43	24	38	52	66	81	96	112	127	143	159	175	190	207	223	239	255	271	288
44	25	39	53	68	83	99	115	130	146	163	179	195	212	228	245	262	278	295
45	25	40	54	70	85	101	117	134	150	167	183	200	217	234	251	268	285	303
46	26	41	56	71	87	104	120	137	154	171	188	205	222	240	257	275	292	310
47	27	42	57	73	90	106	123	140	157	175	192	210	228	245	263	281	299	317
48	27	43	58	75	92	109	126	143	161	179	197	215	233	251	269	288	306	325
49	28	44	60	77	94	111	129	147	165	183	201	220	238	257	276	294	313	332
50	29	45	61	78	96	114	132	150	168	187	206	225	244	263	282	301	320	339
51	29	46	63	80	98	116	135	153	172	191	210	229	249	268	288	307	327	347
52	30	47	64	82	100	119	137	157	176	195	215	234	254	274	294	314	334	354
53	31	48	65 (83	102	121	140	160	179	199	219	239	259	280	300	320	341	361
54	31	49	67	85	104	114	143	163	183	203	224	244	265	285	306	327	348	369
55	32	50	68	87	106	126	146	166	187	207	228	249	270	291	312	333	355	376
56	33	51	69	89	108	129	149	177	190	211	233	254	275	297	318	340	362	384
57	33	52	71	90	111	131	152	173	194	215	237	259	281	302	324	347	369	391
58	34	53	72	92	113	133	155	176	198	220	242	264	286	308	331	353	376	398
59	34	54	73	94	115	136	158	179	201	224	246	268	291	314	337	360	383	406
60	35	55	75	96	117	138	160	183	205	228	250	273	296	320	343	366	390	413

n_1	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
n ₂										0=0,0	5								
41	336	353	370	387	404	421	438	456	473	490	507	524	541	559	576	593	610	628	645
42	345	362	380	397	415	432	450	467	485	503	520	538	556	573	591	609	626	644	662
43	353	371	389	407	425	443	461	479	497	515	533	552	570	588	606	624	642	660	679
44	362	380	399	417	436	454	473	491	510	528	547	565	584	602	621	640	658	677	695
45	371	390	408	427	446	465	484	503	522	541	560	579	598	617	636	655	674	693	712
46	380	399	418	437	457	476	495	515	534	554	573	593	612	631	651	670	690	709	729
47	388	408	428	447	467	487	507	527	547	566	586	606	626	646	666	686	706	726	746
48	397	417	437	458	478	498	518	539	559	579	600	620	640	661	681	701	722	742	763
49	406	426	447	468	488	509	530	550	571	592	613	634	654	675	696	717	738	759	780
50	414	435	457	478	499	520	541	562	583	605	626	647	669	690	711	732	754	775	796
51	423	445	466	488	509	531	553	574	596	618	639	661	683	704	726	748	770	791	813
52	432	454	476	408	520	542	564	586	608	630	652	675	697	719	741	763	786	808	830
53	441	463	485	508	530	553	575	598	620	643	666	688	711	734	756	779	802	824	847.
54	449	472	495	518	541	564	587	610	633	656	679	702	725	748	771	794	818	841	864
55	458	481	505	528	551	575	598	622	645	669	692	716	739	763	786	810	834	857	881
56	467	491	514	538	562	586	610	634	657	681	705	729	753	777	801	825	850	874	898
57	476	500	524	548	572	597	621	645	670	694	719	743	768	792	816	841	865	890	915
58	484	509	534	558	583	608	633	657	682	707	732	757	782	807	832	856	881	906	931
59	493	518	543	568	594	619	644	669	694	720	745	770	796	821	847	872	897	923	948
60	502	527	553	578	604	630	655	681	707	733	758	784	810	836	862	888	913	939	965
										0,01	· · · ·								
41	289	304	320	336	351	367	383	398	414	430	446	462	477	493	509	525	541	557	573
42	296	312	328	345	361	377	393	409	425	442	458	474	490	507	523	539	556	572	588
43	304	321	337	354	370	387	403	420	437	453	470	487	503	520	537	553	570	587	604
44	312	329	346	363	380	397	414	431	448	465	482	499	516	533	550	568	585	602	619
45	320	337	354	372	389	407	424	441	459	476	494	511	529	547	564	582	599	617	635
46	328	345	363	381	399	416	434	452	470	488	506	524	542	560	578	596	614	632	650
47	335	353	372	390	408	426	445	463	481	500	518	536	555	573	592	610	629	647	666
48	343	362	380	399	418	436	455	474	492	511	530	549	568	587	606	625	643	662	681
49	351	370	389	408	427	446	465	484	504	523	542	561	581	600	619	639	658	678	697
50	359	378	398	417	437	456	476	495	515	535	554	574	594	613	633	653	673	693	713
51	366	386	406	526	446	466	486	506	526	546	566	587	607	627	647	667	688	708	728
52	374	395	415	435	456	476	496	517	537	558	578	599	620	640	66t	682	702	723	744
53	382	403	423	444	465	486	507	528	549	570	591	612	633	654	675	696	717	738	759
54	390	411	432	453	475	496	517	538	560	581	603	624	646	667	689	710	732	753	775
55	398	419	441	462	484	506	527	549	571	593	615	637	659	680	702	724	746	768	790
56	405	427	449	471	494	516	538	560	582	605	627	649	671	694	716	738	761	784	806
57	413	436	458	581	503	526	548	571	593	616	639	662	684	707	730	753	776	799	822
58	421	444	467	490	513	536	559	582	605	628	651	674	697	721	744	767	790	814	837
59	429	452	475	499	522	545	569	592	616	640	663	687	710	734	758	781	805	829	853
60	437	460	484	508	532	555	579	603	627	651	675	699	723	747	772	796	820	844	868

n ₁	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
n ₂		-								n=	0.05	1								
41	662								Γ								l		l	
42	679	697															l			<u> </u>
43	697	715	733															T		
44	714	733	751	770																.0
45	731	750	769	789	808															5
46	749	768	788	807	827	846													(0)	
47	766	786	806	826	846	866	886											1		
48	783	804	824	845	865	886	906	927										7		
49	800	821	842	863	884	905	926	947	968											
50	818	839	861	882	903	925	946	968	989	1010						1	>.			
51	835	857	879	901	922	944	966	988	1010	1032	1054					1	1			
52	852	875	897	919	942	964	986	1009	1031	1053	1076	1098				Y				
53	870	893	915	938	961	934					1098				1/					
54	887	910	934	957	980	1003	1026	1050	1073	1096	1119	1143	1166	1189						
55	901	928	952	975	999	1023	1046	1070	1094	1113	1141	1165	1189	1213	1236					
56	922	946	970	994	1018	1042	1067	1091	1115	1139	1163	1187	1212	1236	1260	1284				
57	939	964	988	1013	1037	1062	1087	1111	1136	1161	1185	1210	1235	1259	1284	1309	1333			
58	956	981	1007	1032	1057	1082	1107	1132	1157	1182	1207	1232	1257	1283	1308	1333	1358	1383		
59	974	999	1025	1050	1076	1101	1127	1152	1178	1204	1229	1255	1280	1306	1331	1357	1383	1408	1434	
[60]	991	1017	1043	1069	1095	1121	1147	1173				1277	1303	1329	1355	1381	1407	1433	1460	1486
l _										p=0,0	V	*								
41	589									N	7									
ı · →	605'									(0)										
43	621	637	654																	
44	636	654	671	688																
45	652	670	688	706	723															
	668	687	705	723	741	759		O.												
47	684	7Ö1	722	740	759	777	796													
48	700	719	738	757	776	795	814	834												
49	716	736	755	775	794	814	833	853	872											
50	732	752	772	792	812	832	852	872	892	912										
51	748	769	789	809	830	850	870	891	911	932	952									!
52	764	785	806	827	847	868	889	910	931	951	972	993								
53	780	8ÖI	823	844	865	886	908	929	950	971		1014]	
54	796	818		861	883	905	926	948	970		1013									
	812	834		879	901	923	945	967			1034									
	828	851		896	919	941	964		1009		1054									
	844	867		913	936	959	982	1005	1028	1051	1074	1098	1121	1141	1167	1190	1213			
		884		931	954	978	1001	1024	1048	1071	1095	1118	1142	1165	1189	1215	1256	1260	-	
	877	900	924	948	972	996	1020	1044	1068	1091	1115	1139	1163	1187	1211	1235	1259	1283	1307	
60	893	917	941	965	990	1014	1038	1063	1087	1111	1136	1160	1185	1209	1234	1258	1282	1307	1331	1356

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ t-КРИТЕРИЯ СТЬЮДЕНТА

(Ермолаев О.Ю. Математическая статистика для психологов. М., 2002) Различия между двумя выборками можно считать достоверными, если $t_{\text{эмп}} \ge t_{0,05}$, и тем более достоверными, если $t_{\text{эмп}} \ge t_{0,01}$.

	Число		p	,	Число	.,	p	
	степеней свободы (v)	0,05	0,01	0,001	степеней свободы (v)	0,05	0,01	0,001
	1	12,71	63,66	64,60	18	2,10	2,88	3,92
	2	4,30	9,92	31,60	19	2,09	2,86	3,88
	3	3,18	5,84	12,92	20	2,09	2,85	3,85
	4	2,78	4,60	8,61	21	2,08	2,83	3,82
	5	2,57	4,03	6,87	22	2,07	2,02	3,79
	6	2,45	3,71	5,96	23	2,07	2,81	3,77
	7	2,37	3,50	5,41	24	2,06	2,80	3,75
	8	2,31	3,36	5,04	25	2,06	2,79	3,73
	9	2,26	3,25	4,78	26	2,06	2,78	3,71
	10	2,23	3,17	4,59	27	2,05	2,77	3,69
	11	2,20	3,11	4,44	28	2,05	2,76	3,67
	12	2,18	3,05	4,32	29	2,05	2,76	3,66
	13	2,16	3,01	4,22	30	2,04	2,75	3,65
	14	2,14	2,98	4,14	40	2,02	2,70	3,55
	15	2,13	2,95	4,07	60	2,00	2,66	3,46
	16	2,12	2,92	4,02	120	1,98,	2,62	3,37
	17	2,11	2,90	3,97	∞	1,96	2,58	3,29
	р	0,05	0,01	0,001	-	0,05	0,01	0,001
3hex	POHHHAI							

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ G-КРИТЕРИЯ ЗНАКОВ

(Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2006) Преобладание «типичного» сдвига является достоверным, если $G_{\text{эмп}} \leq G_{0,05}$, и тем более достоверным, если $G_{\text{эмп}} \leq G_{0,01}$.

	I)		I	p			p		I	2
n	0,05	0,01	n	0,05	0,01	n	0,05	0,01	n	0,05	0,01
5	0	-	27	8	7	49	18	15	92	37	34
6	0	-	28	8	7	50	18	16	94	38	35
7	0	0	29	9	7	52	19	17	96	39	36
8	1	0	30	10	8	54	20	18	98	40	37
9	1	0	31	10	8	56	21	18	100	41	37
10	1	0	32	10	8	58	22	19	110	45	42
11	2	1	33	11	9	60	23	20	120	50	46
12	2	1	34	11	9	62	24	21	130	55	51
13	3	1	35	12	10	64	24	22	140	59	55
14	3	2	36	12	10	66	25	23	150	64	60
15	3	2	37	13	10	68	26	23	160	69	64
16	4	2	38	13	O 11	70	27	24	170	73	69
17	4	3	39	13	11	72	28	25	180	78	73
18	5	3	40	14	12	74	29	26	190	83	78
19	5	4	41	14	12	76	30	27	200	87	83
20	5	4	42	15	13	78	31	28	220	97	92
21	6	4	43	15	13	80	32	29	240	106	101
22	6	5	44	16	13	82	33	30	260	116	110
23	7	5	45	16	14	84	33	30	280	125	120
24	7	5	46	16	14	86	34	31	300	135	129
25	7	6	47	17	15	88	35	32			
26	8	6	48	17	15	90	36	33			

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ Т-КРИТЕРИЯ ВИЛКОКСОНА

(Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2006) «Типичный» сдвиг является достоверно преобладающим по интенсивности, если $T_{\text{эмп}} \leq T_{0,05}$, и тем более достоверно преобладающим, если $T_{\text{эмп}} \leq T_{0,01}$.

	l n	1	p		p	
		0,05	0,01	n	0,05	0,01
	5	0		28	130	101
	6	2	_	29	140	110
	7	3	0	30	151	120
•	8	5	1	31	163	130
	9	8	3	32	175	140
	10	10	5	33	187	151
	11	13	7	34	200	162
	12	17	9	35	213	173
	13	21	12	36	227	185
	14	25	15	37	241	198
	15	30	19	38	256	211
	16	35	23	39	271	224
	17	41	27	40	286	238
	18	47	32	41	302	252
	19	53	37	42	319	266
3,1	20	60	43	43	336	281
	21	67	49	44	353	296
	22	75	55	45	371	312
,00°,	23	83	62	46	389	328
3 lekilo Hilbin	24	91	69	47	407	345
alle	25	100-	76	48	426	362
'9'	26	110	84	49	446	379
	27	119	92	50	466	397

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ χ^2 -КРИТЕРИЯ ПИРСОНА

(Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2006) Различия между двумя распределениями могут считаться достоверными,

если $\chi^2_{\text{эмп}} \ge \chi^2_{0,05}$, и тем более достоверными, если $\chi^2_{\text{эмп}} \ge \chi^2_{0,01}$

	p ·				р		р			
	ν	0,05	0,01	ν	0,05	0,01	ν	0,05	0,01	
	1	3,841	6,635	35	49,802	57,342	69	89,391	99,227	
	2	5,991	9,210	36	50,998	58,619	70	90,631	100,425	
	3	7,815	11,345	37	52,192	59,892	71	91,670	101,621	
	4	9,488	13,277	38	53,384	61,162	72	92,808	102,816	
	5_	11,070	15,086	39	54,572	62,428	73	93,945	104,010	
	6	12,592	16,812	40	55,758	63,691	74	95,081	105,202	
	7	14,067	18,475	41	56,942	64,950	75	96,217	106,393	
	8	15,507	20,090	42	58,124	66,206	76	97,351	107,582	
	9	16,919	21,666	43	59,304	67,459	77	98,484	108,771	
	_10	18,307	23,209	44	60,481	68,709	<i>7</i> 8	99,617	109,958	
	11	19,675	24,725	45	61,656	69,957	79	100,749	111,144	
	12	21,026	26,217	46	62,830	71,201	80	101,879	112,329	
	13	22,362	27,688	47	64,001	72,443	81	103,010	113,512	
	14	23,685	29,141	48	65,171	73,683	_ 82	104,139	114,695	
	15	24,996	30,578	49	66,339	74,919	83	105,267	115,876	
	16	26,296	32,000	50	67,505	76,154	84	106,395	117,057	
	17	27,587	33,409	51	68,669	77,386	85	107,522	118,236	
	18	28,869	34,805	52	69,832	78,616	06	108,648	119,414	
	19	30,144	36,191	53	70,993	79,843	87	109,773	120,591	
	20	31,410	37,566	54	72,153	81,069	88	110,898	121,767	
	21	32,671	38,932	55	73,311	82,292	89	112,022	122,942	
	22	33,924	40,289	56	74,468	83,513	90	113,145	124,116	
	23	35,172	41,638	57	75,624	84,733	91	114,268	125,289	
	24	36,415	42,980	<i>5</i> 8	76,778	85,950	92	115,390	126,462	
	25	37,652	44,314	59	77,931	87,166	93	116,511	127,633	
	26	38,885	45,642	60	79,082	88,379	94	117,632	128,803	
100	_ 27	40,113	46,963	61	80,232	89,591	95	118,752	129,973	
TA	28	41,337	48,278	62	81,381	90,802	96	119,871	131,141	
VOL.	29	42,557	49,588	63	82,529	92,010	97	120,990	132,309	
05	30	43,773	50,892	64	83,675	93,217	98	122,108	133,476	
3hekipo	31	44,985	52,191	65	84,821	94,422	99	123,225	134,642	
	32	46,194	53,486	66	85,965	95,626	100	124,342	135,807	
	33	47,400	54,776	67	87,108	96,828				
	34	48,602	56,061	68	88,250	98,028	1			

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА

Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2006) Связь достоверна, если $r_{\text{sэмп} \geq} r_{\text{s} \, 0,05}$, и тем более лостоверна воли -Связь достоверна, если $r_{\text{sэмп} \geq} r_{\text{s} \, 0,05}$, и тем более достоверна, если $r_{\text{sэмп} \geq} r_{\text{s} \, 0,05}$

			I				p		
	n	0,05	0,01	n	0,05	<i>p</i> 0,01	n	0,05	0,01
	5	0,03	0,01	17	0,03	0,62	29	0,03	0,48
	6	0,94	-	18	0,48	0,60	30	0,37	0,48
	7	0,83	0,94	19	0,47	0,58	31	0,36	0,47
	8	0,78	0,88	20	0,45	0,57	32	0,36	0,45
	9	0,72	0,83	21	0,43	0,56	33	0,34	0,45
	10	0,64	0,83	22	0,44	0,54	34	0,34	0,43
	11	0,61	0,79	23	0,43	0,54	35	0,34	0,44
	12	-	0,73	23	0,42	0,53	36	0,33	0,43
	13	0,58 0,56	0,73	26	0,41	0,52	37	0,33	0,43
	14	0,54	0,70	26	0,39	0,51	38	0.32	0,43
	15	0,54	0,66	27	0,39	0,30	39	0,32	
	16	0,52	0,60	20	0,38	0,49	40	0,32	0,41
	10	0,50	0,04	20	0,50	0,40	70	0,51	0,40
Blek				QNC)'				
			W.	5					
			2						
			2%						
		Ni.							
		10,							
	×								
	·UO.	•							
	(4								
VO.	~								
(1)									

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ЛИНЕЙНОЙ КОРРЕЛЯЦИИ ПИРСОНА ${\bf r}_{xy}$

(Ермолаев О.Ю. Математическая статистика для психологов. М., 2002) Связь достоверна, если $r_{xy \text{ эмп}} \ge r_{xy \text{ 0,05}}$, и тем более достоверна, если $r_{xy \text{ эмп}} \ge r_{xy \text{ 0,01}}$

	Число степеней	Уровни зн	ачимости	Число степеней	Уровни значимости	
	свободы (n-2)	0,05	0,01	свободы (n-2)	0,05	0,01
	5	0,75	0,87	27	0,37	0,47
	6	0,71	0,83	28	0,36	0,46
	7	0,67	0,80	29	0,36	0,46
	8	0,63	0,77	30	0,35	0,45
	9	0,60	0,74	35	0,33	0,42
	10	0,58	0,71	40	0,30	0,39
	11	0,55	0,68	45	0,29	0,37
	12	0,53	0,66	50	0,27	0,35
	13	0,51	0,64	60	0,25	0,33
	14	0,50	0,62	70	0,23	0,30
	15	0,48	0,61	80	0,22	0,28
	16	0,47	0,59	90	0,21	0,27
	17	0,46	0,58	100	0,20	0,25
	18	0,44	0,56	125	0,17	0,23
	19	0,43	0,55	150	0,16	0,21
	20	0,42	0,54	200	0,14	0,18
	21	0,41	0,53	300	0,11	0,15
_(22	0,40	0,52	400	0,10	0,13
76	23	0,40	0,51	500	0,09	0,12
Oleki	24	0,39	0,50	700	0,07	0,10
0	25	0,38	0,49	900	0,06	0,09
	26	0,37	0,48	1000	0,06	0,09
	p	0,05	0,01	-	0,05	0,01

ОТВЕТЫ К ЗАДАНИЯМ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Тема 3

6. R=55, \bar{x} =146,55, D=338,24, σ =18,39, v=12,6%; 7. A=0,23; E=-0,95

Тема 5

- 1. $Q_{3M\Pi} = 11$, H_1 ; 2. $U_{3M\Pi} = 60$, H_0 ; 3. $U_{3M\Pi} = 11$, H_1 ; 4. $Q_{3M\Pi} = 10$, H_1 ;
- **5.** $U_{9M\Pi} = 27.5$, H_0 ; **6.** $t_{9M\Pi} = 1.74$, H_0 ; **7.** $Q_{9M\Pi} = 3$, H_0 ; **8.** $U_{9M\Pi} = 83.5$, H_0
- 9. t_{amn} = 1,14, H_0 ; 10. U_{amn} =133, H_1 ; 11. t_{amn} = 1,92, H_0 ; 12. U_{amn} =24, H_1

Тема 6

- 1. $G_{\text{3MI}} = 3$, H_0 ; 2. $T_{\text{3MI}} = 10.5$ H_1 ; 3. $t_{\text{3MI}} = 3.43$, H_1 ; 4. $T_{\text{3MI}} = 13$, H_1 ;
- 5. \bar{x}_1 =154,4; \bar{x}_2 =160,1; $t_{\text{эмп}}$ =3,45, H_1 ; 6. $T_{\text{эмп}}$ =17,5 H_0 ; 7. $G_{\text{эмп}}$ =4, H_0 ; $T_{\text{эмп}}$ =23, H_1 ;
- 8. $G_{\rm ЭМП}$ =3, H_1 ; 9. $T_{\rm ЭМП}$ =17,5, H_1 ; $t_{\rm ЭМП}$ =2,64, H_1 ; 10. ЭМПАТИЯ: $G_{\rm ЭМП}$ =4, H_0 , коммуникабельность: $G_{\rm ЭМП}$ =4, H_0 . ЭМПАТИЯ: $T_{\rm ЭМП}$ =22, H_0 , коммуникабельность: $T_{\rm ЭМП}$ =20, H_0 ; 11. $G_{\rm ЭМП}$ =0, H_1 ; 12. $t_{\rm ЭМП}$ =2,39, H_1 ; 13. a) $t_{\rm ЭМП}$ =1,64, H_0 б) $G_{\rm ЭМП}$ =2, H_0 .

Тема 7

- 1. χ^2_{3MH} = 3,68, H₀; 2. χ^2_{3MH} = 4,86, H₀; 3. χ^2_{3MH} = 3,65, H₀; 4. χ^2_{3MH} = 0,71, H₀;
- 5. $\chi_{3mn}^2 = 11.6$, H₁; 6. $\chi_{2mn}^2 = 20.9$, H₁; 7. $\chi_{3mn}^2 = 0.17$, H₀; 8. $\chi_{2mn}^2 = 1.86$, H₀;
- 9. a) $\chi^2_{num} = 0.64$, H_0 ; 6) $\chi^2_{num} = 3.86$, H_1 ; 10. $\chi^2_{num} = 1.62$, H_0 ; 11. $\chi^2_{num} = 13.33$, H_1 ;
- 12. $\chi^2_{\text{sum}} = 11,84$, H_1 ; 13. $\chi^2_{\text{sum}} = 6,45$, H_0 ; 14. $\chi^2_{\text{sum}} = 19,12$, H_1 ; 15. $\chi^2_{\text{sum}} = 26,5$, H_1 .

Тема 8

- **5.** $r_{s \text{ \tiny SMIL}} = 0.56$, p > 0.05; **6.** $r_{s \text{\tiny SMIL}} = -0.657$, $p \le 0.05$; **7.** $r_{s \text{\tiny SMIL}} = 0.92$; **8.** $r_{s \text{\tiny SMIL}} = 0.74$;
- 9. $r_{s \text{ 3ML}} = 0.92$, $p \le 0.01$; 10. $r_{xy \text{ 3ML}} = -0.48$, p > 0.05; 11. $r_{xy \text{ 3ML}} = 0.694$, $p \le 0.05$;
- 12. $r_{xy \to mn} = 0.517$, $p \le 0.05$; 13. $r_{xy \to mn} = 0.48$, $p \le 0.05$.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- Положение о социально-педагогической и психологической службе учреждения образования; Постановление Министерства образования Республики Беларусь 27.04.2006 №42. – 12 с.
- Л. Ф. Бурлачук. Санкт-Петербург: Питер, 2008. 384 с.
- журлачук. Санкт-Петербург: Питер, 2008. 384 с. Гапанович-Кайдалов, Н. В. Введение в научное психологическое сследование: учебное пособие / Н. В. Гапанович-Кайдалов М. ПО, 2005. 84 с. исследование: учебное пособие / Н. В. Гапанович-Кайдалов. – Минск: $A\Pi O, 2005, -84 c.$
- Гласс, Дж. Статистические методы в педагогике и психологии / Дж. Гласс, Дж. Стенли. – Москва: Прогресс, 1976. – 420 с.
- Гусак, А. А. Теория вероятностей : справочное пособие к решению задач / А. А. Гусак, Е. А. Бричикова. - Минск: ТетраСистемс, 2002. -288 c.
- Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для студентов вузов / В. Е. Гмурман. – Москва: Высшая школа, 1998. – 400 с.
- Гмурман, В. Е. Теория вероятностей и математическая статистика : учебное пособие для вузов / В. Е. Гмурман. - Москва : Высшая школа, 1999. - 479 c.
- 8. Гуткин, М. С. Основы измерения в психологии: учебное пособие для вузов / М. С. Гуткин. – Гродно: ГрГУ, 1999. – 120 с.
- Ермолаев, О. Ю. Математическая статистика для психологов : учебник / О. Ю. Ермолаев. – Москва: Флинта, 2002. – 336 с.
- 10. Ермолаев-Томин, О. Ю. Математические методы в психологии: учебник для бакалавров / О. Ю. Ермолаев. - Москва: Юрайт, 2013. -511 c.
- 11. Иващенко, Ф. И. Практикум по методологии психологического исследования / Ф. И. Иващенко. – Минск: ФУАинформ, 2003. – 138 с.
- 12. Кремень, М.А. Математические методы в научных исследованиях: для педагогов и психологов / М. А. Кремень. – Минск : НИО, 1998. – 92
- 13. Кутейников, А. Н. Математические методы в психологии : учебное пособие / А. Н. Кутейников. – СПб.: Речь, 2008. – 172 с.
- 14. Лупандин, В. И. Математические методы в психологии: учебное пособие / В. И. Лупандин. — Екатеринбург: Издательство Уральского университета, 2009. - 175 c.
- 15. Максимова, О. В. Теория вероятностей и математическая статистика : учебное пособие для студентов средних специальных учебных заведений. - Москва: Издательско-торговая корпорация «Дашков и К», 2007. - 320 c.
- 16. Математика для психологов: учебник / А. Н. Кричевец, Е. В. Шикин,

- А. Г. Дьячков; под ред. А. Н. Кричевца. Москва: Флинта, 2003. 376 с.
- 17. Математическое моделирование в психологии: курс лекций [Электронный ресурс]. 2001. Режим доступа: http://www.twirpx.com/file/ 316497. Дата доступа: 02.02.2013.
- 18. Наследов, А. Д. Математические методы психологического исследования. Анализ и интерпретация данных : учебное пособие / А. Д. Наследов. Санкт-Петербург : Речь, 2006. 392 с.
- 19. Немов, Р. С. Психология: учебник для студентов высших педагогических учебных заведений: в 3 кн. / Р. С. Немов. Москва: ВЛАДОС, 2003. Кн. 3: Психодиагностика. Введение в научное психологическое исследование с элементами математической статистики. 620 с.
- 20. Никандров, В. В. Экспериментальная психология : учебное пособие / В. В. Никандров. Санкт-Петербург : Речь, 2003. 480 с.
- 21. Основы математической статистики в психологии : учебнометодическое пособие : в 2 ч. / сост. Н. А. Литвинова, Н. П. Радчикова. Минск : БГПУ, 2007. Ч 1. 87 с.
- 22. Основы математической статистики в психологии: учебнометодическое пособие: в 2 ч. / сост. Н. А. Литвинова, Н. П. Радчикова. Минск: БГПУ, 2007. Ч 2. 44 с.
- 23. Практикум по математике для студентов-заочников, обучающихся по специальности «Педагогика и методика начального обучения» / сост. Р. О. Кирбай. Мозырь : МГПУ, 2002. 54 с.
- 24. Радчикова, Н. П. Экспериментальная психология: методическое пособие / Н. П. Радчикова. Минск: БГПУ им М. Танка, 2001. 32 с.
- 25. Романюк, Г. Э. Задачи по основам математической статистики в психологии : методическое пособие / Г. Э. Романюк, Н. П. Радчикова. Минск : БГПУ им М. Танка, 2002. 50 с.
- 26. Сечко, В. В. Математические методы обработки психологических данных / В. В. Сечко. Минск : АПО, 2002. 78 с.
- 27. Сидоренко, Е. В. Методы математической обработки в психологии / Е. В. Сидоренко. Санкт-Петербург: Социально-психологический центр, 2001. 350 с.
- 28. Суходольский, Г. В. Математическая психология / Г. В. Суходольский. Харьков : Гуманитарный Центр, 2006. 360 с.
- 29. Суходольский, Г. В. Математические методы в психологии / Г. В. Суходольский. Харьков : Гуманитарный Центр, 2008. 284 с.
- 30. Суходольский, Г. В. Основы математической статистики для психологов / Г. В. Суходольский. Ленинград : ЛГУ, 1972. 430 с.
- 31. Шевандрин, Н. И. Основы психологической диагностики : учебник для студентов высших учебных заведений : в 3 ч. / Н. И. Шевандрин. Москва : ВЛАДОС, 2003. Ч. 1. 288 с.

СОДЕРЖАНИЕ

	Введение	3
	Тема 1 Основы измерений в психологии	4
	Тема 2 Первичное описание эмпирических данных	12
	Тема 3 Вычисление основных статистических показателей	21
	Тема 4 Проверка статистических гипотез	31
	Тема 5 Выявление достоверности различий в уровне исследуемого признака	36
	Тема 6 Оценка достоверности сдвига в значениях исследуемого	47
	Тема 7 Выявление различий в распределениях признака	58
	Тема 8 Выявление взаимосвязи признаков	66
	Приложение 1 Критические значения Q-критерия Розенбаума	
	Приложение 2 Критические значения U-критерия Манна-Уитни	
	Приложение 3 Критические значения t-критерия Стьюдента	
	Приложение 4 Критические значения G -критерия знаков	85
	Приложение 5 Критические значения Т -критерия Вилкоксона	
	Приложение 6 Критические значения χ^2 -критерия Пирсона	87
	Приложение 7 Критические значения коэффициента корреляции рангов	
	Спирмена r _s	88
	Приложение 8 Критические значения коэффициента линейной	
	корреляции Пирсона гху	89
	Приложение 9 Ответы к заданиям для самостоятельной работы	
	Список использованной литературы	91
	Приложение 9 Ответы к заданиям для самостоятельной работы	
	HHDIN ON	
-V	(b _{Ox} ,	
Olle,		
_		

Производственно-практическое издание

Калачева Ирина Викторовна

Использование методов математической статистики в работе специалистов социально-педагогической и психологической службы учреждений образования

Практическое пособие

EKNULY WUEHIN Y Оригинал-макет подготовлен к изданию отделом информационнометодической и издательской работы УО «Могилёвский государственный областной институт развития образования»

Этветственный за выпуск В. М. Соколова

Подписано в печать март 2015 г. Формат 60х84 1/16.Печать офсетная. Условия печатных листов 5,8. Тираж 24 экз.

УО «МГОИРО»

Свидетельство о государственной редакции издателя, изготовителя, распространителя печатных изданий № 1/282 от.07.04.2014. 212011, г. Могилев, пер. Березовский, 1 а