И.В. Марченко

МАТЕМАТИЧЕСКАЯ СТАТИОТ Электоонный горина библина тикум

Могилев 2009

<text><text><text><text><text>

Могилев 2009

УДК 519.22(075.8) ББК 22 172 M30

Печатается по решению редакционно-издательского совета УО «МГУ им. А.А. Кулешова» When the state

Репензент

доцент кафедры математического анализа. информатики и вычислительной техники УО «МГУ им. А.А. Кулешова» ПА Мазаник

Марченко. И.В.

Математическая статистика: практикум/И.В. Марченко.-Мо-M30 гилев: УО «МГУ им. А.А. Кулешова», 2009. – 28 с.: ил.

ISBN 978-985-480-514-6

Данное издание включает лабораторные работы и индивидуальные задания по основным разделам курса «Математическая стагистика». Задания снабжены примерами и метолическими рекомендациями по их решению с использованием табличного процессора MS Excel.

ления ения опекпронный архивоион Предназначается для студентов физико-математических и экономических

УДК 519.22(075.8) ББК 22.172

© Марченко И.В., 2009 © Оформление. УО «МГУ им. А.А. Кулсшова», 2009

ISBN 978-985-480-514-6

ЛАБОРАТОРНАЯ РАБОТА № 1

Тема: Генеральная совокупность и выборка. Вариационные ряды. Полигон и гистограмма. Числовые характеристики выборки

Пример. Пятьлесят абитуриентов получили на вступительных экзаменах слелующие баллы:

	-							~ ~ ~	
12,	14,	19,	15,	14,	18,	13,	16,	17,	12,
20,	17,	15,	13,	17,	16,	20,	14,	14,	13,
17,	16,	15,	19,	16,	15,	18,	17,	15,	14,
16,	15,	15,	18,	15,	15,	19,	14,	16,	18,
18,	15,	15,	17,	15,	16,	16,	14,	14,	17.
Требу	erea					1.			

Гребуется:

1. Составить вариационный ряд.

2. Записать таблицу частот и относительных частот.

3. Построить полигон частот и полигон относительных частот.

4. Найти эмпирическую функцию распределения $F^{*}(x)$. Построить ее график.

5. Найти числовые характеристики данной выборки ($\overline{X}_{e}, D_{e}, \sigma_{e}$) $D_{ucnp.g.}$, эмпирические моменты второго порядка $v_{2}^{*}, \mu_{2}^{*}, \kappa$ оэффициент вариации V), воспользовавшись их статистическими определениями. Полученные результаты проверить с помощью встроенных функций Excel.

Решение.

1) Объем данной выборки n = 50. Вариационный ряд (варианты, расположенные в порядке возрастания): 12, 13, 14, 15, 16, 17, 18, 19, 20. Для построения вариационного ряда удобно воспользоваться следующими встроенными функциями Excel:

МИН(число1;число2;...) - возвращает наименьшее значение в списке аргументов.

МАКС(число1;число2; ...) - возвращает наибольшее значение из набора значений.

nell088

Здесь число1, число2, ... – числа, среди которых требуется найти наименьшее (соответственно, наибольшее).

2) Составим таблицу частот и относительных частот. Частота n_k варианты – это количество повторов варианты в выборке. Относи*тельная частота (частость)* μ_k *варианты* – это отношение ее частоты к объему выборки ANTICILLE

$$\mu_i = \frac{n_i}{n}.$$

Скопируем данную выборку в таблицу Excel и построим для нее таблицу частот и относительных частот. Для этого выполним следующие действия:

- 1. Заголовки строк (значения первого столбца) этой таблицы создадим в редакторе Microsoft Equation 3.0, для вызова которого выполним команды Вставка / Объект / Microsoft Equation 3.0.
- 2. Подсчет частот вариант осуществим статистической функцией СЧЕТЕСЛИ. Для этого выполним команды Вставка / Функция / Статистические / СЧЕТЕСЛИ. В ноявившемся диалоговом окне в качестве диапазона введем диапазон ячеек, в котором располагаются значения вариант данной выборки, а в качестве условия введем $=x_{,}$ где $x_{,}$ это фиксированное значение варианты. Если выборка располагается в диапазоне А1: J5, то в ячейку В10 со значением частоты варианты $x_1 = 12$ следует ввести формулу СЧЕТЕСЛИ(\$A1:\$J5; "=12") (см. рис. 1, строка формул отображает формулу в выделенной ячейке).

3. Относительные частоты определяются формулой (1), которая для ячейки **B11** примет вид = **B10**/50.

4. Итоговая таблица находится в диапазоне А9 : J11 (см. рис. 1).

Замечание. При заполнении таблицы используйте операцию копирования и не забывайте об относительных и абсолютных ссылках.

3) По полученной в п. 2) таблице построим полигон частот и полигон относительных частот. Полигоном частот (относительных частот) называется ломаная линия, соединяющая точки с координатами (x_i, n_i) (соответственно, (x_i, μ_i)). Для построения этих ломанных воспользуемся графическими средствами Excel.

ĥ		a 🖪 Ta	が 米 剛	n n	. 😩 Σ	/~ AL 10	L 🕐 🐉 A	rial Cyr	- 1	0 - X
	B10		= =C4ÉT	ЕСЛИ(S A1:	\$J5;"=12")		ni i side	- analysis in the second	en namen in bladder.	
2	A	В	C	D	Е	F	G	н	1122	J
	12	14	19	15	14	18	13	16	17	12
	20	17	15	13	17	16	20	14	14	13
Ň	17	16	15	19	16	15	18	17	15	14
3	16	15	15	18	15	15	19	14	16	18
20	18	15	15	17	15	16	16	14	14	17
										No.
				•			<u>.</u>	aa 1		2
1									Ţ.	
2	x,	12	13	14	15	16	17	18	> 19	20
Ê	ni	2	ј з	8	12	8	7	5	- 3	2
Ň	μ_{i}	0.04	0.06	0.16	0.24	0.16	0.14	0,1	0.06	0,04

- Рис. 1
- 1. Выполним команды Вставка / Диаграмма. В появившемся диалоговом окне выберем тип диаграммы – график с маркерами, помечающими точки данных. Нажмем кнопку Далее.
- 2. В следующем окне Мастера диаграмм укажем диапазон диапазон частот B10:J10, расположив ряды в строках. На вкладке Ряд выберем в качестве подписей по оси X диапазон значений вариант B9:J9. Нажмем кнопку Далее.
- 3. На третьем шаге **Мастера** на вкладке **Линии сетки** добавим по оси X основные линии. Нажмем кнопку **Далее**.
- 4. На последнем шаге разместим диаграмму на имеющемся листе и нажмем кнопку Готово.

Полученная диаграмма представляет собой полигон частот (см. рис. 2). Аналогично тому, как это делалось выше, построим полигон относительных частот (см. рис. 3).

Рис. 2

4) Если закон распределения выборки задан таблицей относительных частот

\mathbf{x}_{i}	\mathbf{x}_1	x ₂	x 3	·	×.
μ_i	μ_1	μ_2	μ_3	1.1	μ_k

то эмпирическая функция распределения имеет вид

$$F^{\star}(x) = \begin{cases} 0, -\infty < x \le x_{1}, \\ \mu_{1}, x_{1} < x \le x_{2}, \\ \mu_{1} + \mu_{2}, x_{2} < x \le x_{1}, \\ \dots \\ \dots \\ \sum_{i=1}^{k-1} \mu_{i}, x_{k-1} < x \le x_{k}, \\ 1, x > x_{k}. \end{cases}$$
(2)

KYTIELIOB3

Для вычисления значений этой функции и построения ее графика в Excel создадим таблицу (см. рис. 4, диапазон ячеек A32 : K33). В первую строку введем значения правых концов промежутков $|x_i, x_{i+1}|$ задания функции $F^*(x)$. Поскольку далее требуется построить график этой функции, то в ячейку K32 вместо значения " $+\infty$ " поместим любое значение, большее $x_k = 20$, например, "21". Во второй строке таблицы вычислим значения функции на соответствующем промежутке. Для этого в ячейку B32 введем значение "0", в ячейку C32 поместим формулу 6

"=В33+В11" (в ячейке **В11** находится значение относительной частоты μ_1) и распространим ее путем копирования на последующие ячейки этой строки. По полученной таблице, воспользовавшись редактором формул Microsoft Equation 3.0, запишем функцию $F^*(x)$ в виде (2). Например, значение "0,04" находится в ячейке **С33**, соответствующей ячейке **С32**, содержимое которой есть число "13" – правый конец промежутка (12; 13]. Следовательно, при $x \in (12; 13]$ функция $F^*(x)$ принимает значение "0,04". В результате получим

$$F^{*}(x) = \begin{cases} 0, \ -\infty < x \le 12, \\ 0,04, \ 12 < x \le 13, \\ 0,1, \ 13 < x \le 14, \\ 0,26, 14 < x \le 15, \\ 0,5, \ 15 < x \le 16, \\ 0,66, \ 16 < x \le 17, \\ 0,8, \ 17 < x \le 18, \\ 0,9, \ 18 < x \le 19, \\ 0,96, \ 19 < x \le 20, \\ 1, \ 20 < x < +\infty. \end{cases}$$

	B	C	D	E	ः िहिन्दर	G	H	\mathbf{L}	3	К	Ł	
X,	12	13	14	15	16		18	19	20	21		
r (x)	0	0,04	0,1	0,26	0,5	0,68	8,0	0,9	0,96	1		i gen e e
1	Эмпприческа	ия функции	граспред	еления			Эмпирич	іеская ф	ункция р	аспреде	ления в	
12.0	<u> </u>							видег	падкои к	ривои		
						12 -				1 10, -111 alto-1404 - 500		
0,8						ne					-Amerikan	
0,6 -		<u> </u>				0,0			· · · · · · · · · · · · · · · · · · ·			
0,4 -						0.0			a special			
	4 · · · 4					U,9			/			
0.0.1					A. I. M. Phys. Rev. A 40, 100 (1996).		- October Der Michten um 12	(a) Some of the Original Academy of the Original States of the Or	 Address and the second sec second second sec	Construction of the second		

Рис. 4

Замечание.

График этой функции построим в виде гистограммы и в виде графика с маркерами (см. п. 3). Результаты построения приведены на рис. 4.

5) Для нахождения числовых характеристик выборки выполним необходимые промежуточные вычисления, результаты которых занесем в таблицу (см. рис. 5, диапазон ячеек A53 : J55).

	B54 🗸	<i>f</i> * =(E	39-\$B\$6C)*(8	39- \$ 8 \$ 60)					-	<u> </u>
	A	В	С	D	E	F	G	Н	· 1	2
53	Χ ;μ;	0,48	0,78	2,24	3,6	2,56	2,38	1,8	1,14	8,0
54	$(x_i - \overline{X}_e)^2$	14,2884	7,7284	3,1684	0,6084	0,0484	1,4884	4,9284	10,3684	17,8084
55	$(x_i - \overline{X}_i)^{\prime} \mu_i$	0,571536	0,463704	0,506944	0,146016	0,007744	0,208376	0,49284	0,622104	0,712336
56 57								P''		
58						· · · · · · · · ·		<u>N</u>		
59 60	X.	по формуле 15,78	проверка 15,78				, OX	*		
61	D,	3,7316	3,7316				2			
62	Drenge.	3,8077551	3,8077551			1	\mathcal{N}			
63	σ,	1,93173497	1,931735	l						

Рис. 5

Выборочное среднее определяется формулой

$$\widehat{X}_{a} = \sum_{i=1}^{k} x_{i} \mu_{i},$$

поэтому предварительно найдем произведения значений вариант на соответствующие относительные частоты, для чего в ячейку **B53** введем формулу

$$= B9*B11,$$

при этом ячейка **B9** содержит значение варианты x_1 , а ячейка **B11** – относительную частоту этой варианты. На остальные ячейки в строке **53** распространим данную формулу путем копирования ее из ячейки **B11**. После этого занесем в ячейку **B60** сумму значений в строке **53** с помощью функции **СУММ**. Эта сумма и будет искомым выборочным средним. Для проверки полученного результата воспользуемся статистической функцией **СРЗНАЧ**, которая возвращает среднее арифметическое своих аргументов. Чтобы найти с ее помощью выборочное среднее, введем в ячейку **C60** формулу =СРЗНАЧ(A1:J5),

указав в качестве диапазона диапазон значений данной выборки. 8

Выборочной дисперсией называется сумма произведений квалратов отклонений вариант на соответствующие относительные частоты. т.е.

$$D_{e} = \sum_{i=1}^{k} \left(x_{i} - \overline{X}_{e} \right)^{2} \mu_{i} .$$

итеннова Лля вычисления дисперсии произведем вспомогательные вычисления в строках 54 и 55. В ячейку В54 введем формулу

=(B9-\$B\$60)*(B9-\$B\$60).

а в ячейку В55

=B54*B11.

после чего скопируем введенные формулы на остальные ячейки в этих строках. Результатом суммирования значений из строки 55 является выборочная дисперсия (ячейка В61). Проверку проведем с помощью статистической функции ДИСПРА, выбрав в качестве диапазона ее значений лиапазон значений выборки.

Исправленной выборочной дисперсией называется величина

$$D_{ucnp.s} = \frac{n}{n-1} D_s.$$

Для ее нахождения в ячейку B62 введем формулу =50/49*B61. Результат проверим функцией ЛИСПА

Поскольку выборочное среднее квадратическое отклонение $\sigma_{e} = \sqrt{D_{e}}$, для его вычисления поместим в ячейку **B63** формулу =КОРЕНЬ(В61). Результат проверим функцией СТАНДОТКЛОН.

Коэффициентом вариации называется процентное отношение выборочного среднего квадратического отклонения к выборочному среднему

$$V = \sigma_{s} / \overline{X}_{s} \cdot 100\%.$$
(3)

Эмпирическим начальным моментом порядка т называют выборочное среднее случайной величины X^m , которое определяется формулой

$$\boldsymbol{v}_{m}^{*} = \overline{X}_{s} \left(X^{m} \right) = \sum_{i=1}^{k} x_{i}^{m} \boldsymbol{\mu}_{i}.$$

$$\tag{4}$$

Эмпирическим центральным моментом порядка т называют выборочное среднее отклонения в *т*-й степени

$$\mu_m^* = \overline{X}_s \left(X - \overline{X}_s \right)^m = \sum_{i=1}^k \left(x_i - \overline{X}_s \right)^m \mu_i.$$
⁽⁵⁾

Эмпирические моменты и коэффициент вариации находятся в соответствии с формулами (3) – (5) аналогично тому, как это делалось выше.

Задача. В результате 50 независимых измерений некоторой величины получены данные

-									
2,2	5,3	3,4	4,5	5,1	3,4	4,3	2,7	3,5	5,8
2,3	4,4	4,7	2,1	4,8	3,6	3,5	4,2	5,7	3,7
4,2	3,4	4,3	3,4	4,3	4,1	5,3	4,8	5,1	2,4
3,7	4,3	5,6	4,5	3,4	3,2	4,6	3,6	4,2	4,1
5,5	4,6	4,8	4,5	4,3	4,8	3,9	3,8	5,9	5,1
								V	

Требуется:

1. Составить вариационный ряд.

2. Записать таблицу частот и относительных частот.

3. Построить полигон частот и полигон относительных частот.

4. Найти эмпирическую функцию распределения $F^*(x)$. Построить ее график.

5. Найти числовые характеристики данной выборки (\overline{X}_{s} , D_{s} , σ_{s} , $D_{ucnp.e.}$, эмпирические моменты второго порядка v_{2}^{*} , μ_{2}^{*} , коэффициент вариации V), воспользовавшись их статистическими определениями. Полученные результаты проверить с помощью встроенных функций Excel.

Указание. Методика выполнения этого задания та же, что и в примере.

ЛАБОРАТОРНАЯ РАБОТА № 2

Тема: Точечные оценки параметров распределения. Доверительные интервалы для математического ожидания и среднего квадратического отклонения. Критерий согласия χ^2 Пирсона.

Пример. Исходные данные см. в примере к лабораторной работе 1. Требуется:

1) Исходя из графика эмпирической функции распределения $F^*(x)$, выдвинуть гипотезу о законе распределения генеральной совокупности.

2) Найти точечные оценки математического ожидания и среднего квадратического отклонения. Записать с их учетом плотность распределения вероятности f(x).

3) С помощью критерия согласия Пирсона проверить предположение о нормальном законе распределения данной выборки.

4) Если случайная величина X распределена нормально, то найти доверительные интервалы для математического ожидания и среднего квадратического отклонения, взяв доверительную вероятность $\gamma = 0.95$.

5) Вычислить вероятность P(14,5 < X < 18,5).

Решение.

1) Вид эмпирической функции распределения (см. рис. 4) позволяет выдвинуть гипотезу о нормальном законе распределения.

Замечание. Если возникают сомнения, то следует рассмотреть полигон или гистограмму относительных частог, которые дают представление о плотности распределения вероятности. В нашем случае кривая напоминает график плотности распределения вероятности нормального распределения.

Э 2) Функция плотности распределения вероятности нормального распределения имеет вид

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}.$$
 (6)

11

Точечными оценками параметров а и о нормального распределения являются выборочное среднее \overline{X} и выборочное среднее квадратическое отклонение $S = \sqrt{D_a}$, т.е. $a \approx \overline{X}$, $\sigma \approx S$. Для рассматриваемого примера после подстановки найденных в п. 5) лабораторной работы 1 значений $\overline{X} = 15.78$ и S = 1.932 в формулу (6) получаем elliogg

$$f(x) = 0.21e^{-\frac{(x-15,78)^2}{7,45}}$$

3) Для проверки предположения о нормальном законе распределения воспользуемся критерием согласия Пирсона. Чтобы построить интервальную таблицу относительных частот, определим шаг таблицы. Для этого найдем размах варьирования

$$R = |x_{\max} - x_{\min}| = 20 - 12 = 8$$

и подберем такое число $n \ge 5$, на которое его удобно разделить. Возьмем число частичных интервалов n = 8. Тогда шаг таблицы h = 1.

$ x_i, x_{i+1} $	[12, 13)	[13, 14)	[14, 15)	[15, 16)	[16, 17)	[17, 18)	[18, 19)	[19, 20]
m _i	2	3	8	12	8	7	5	5

Поскольку выбранный критерий согласия требует, чтобы частота варианты в каждом частичном интервале была не меньше 5, и первые два интервала не удовлетворяют этому условию, объединим их. В результате получим новую интервальную таблицу относительных частот

$ x_i, x_{i+1} $	[12, 14)	[14, 15)	[15, 16)	[16, 17)	[17, 18)	[18, 19)	[19, 20]
m_i	5	8	12	8	7	5	5

Внесем эти данные в таблицу Excel (см. рис. 6, ячейки A1:H2). В первую строку введем значения правых' концов промежутков $|x_{i}, x_{i+1}|$, а во вторую строку соответствующие им частоты m_i . Найдем вероятности p_i по формуле

¹ Значение x, не участвует в дальнейших вычислениях, поэтому нет необходимости вносить его в таблицу Excel.

$$p_{i} = P\left(X \in \left|x_{i}; x_{i+1}\right|\right) = F\left(x_{i+1}\right) - F\left(x_{i}\right) = \Phi\left(\frac{x_{i+1} - \overline{X}}{S}\right) - \Phi\left(\frac{x_{i} - \overline{X}}{S}\right).$$
(7)

Поместим в ячейки **B4** и **D4** соответственно \overline{X} и S, которые были вычислены в лабораторной работе 1. Для удобства вычислений составим таблицу (рис. 6, диапазон A5 : H8). Значения $u_i = \frac{x_i - X}{S}$ в пятой строке вычислим с помощью статистической функции НОРМАЛИЗА-ЦИЯ. Для этого поместим в ячейку В5 формулу

	B9	-	=(B2-B7)*	(82-87)/87						
22	A	B	C	D	E	F	G	н ,	. St. 1	° 1 ⊂ K
1	x,	14	15	16	17	18	19	20		
2	m _i	5	8	12	8	7	5	5		
3							2			
١.	X =	15,78	$S = \sigma_s =$	1,931735		12				
5	u _i	-0,92145	-0,40378	0,113887	0,631557	1,149226	1,666895	+ 00		
<u>.</u>	Pi	0,178407	0,164779	0,20215	0,190825	0,138607	0,077464	0,047768	1	проверка
7.	np;	8 920368	8 238958	10,1075	9,541264	6,93034	3,873194	2,388379		
B	$\frac{(m_i - np_i)^2}{np_i}$	1 722943	0,006931	0,354348	0,248971	0,0007	0,327815	2,855728		
1	7 ² N25x	5,517436	- N	\$						
	<i>l</i> _{xp}	9,487728	at i						·····	

=НОРМАЛИЗАЦИЯ(B1;\$B\$4;\$D\$4)

При этом ячейка В1 содержит значение "14" правого конца первого частичного интервала [12;14). Распространим эту формулу путем копирования на ячейки С5: G5. Поскольку возможные значения нормально распределенной случайной величины лежат в промежутке (- ∞ ,+ ∞), то значение в ячейке H5 не вычисляем (оно соответствует $x_{i} = 20$), а вводим "+∞" с помощью Microsoft Equation 3.0.

Значения вероятности p_i вычислим по формуле (7) с помощью статистической функции НОРМСТРАСП. Для этого в ячейку С6 введем формулу

=HOPMCTPACΠ(C5)-HOPMCTPACΠ(B5)

и скопируем ее в ячейки **D6:G6**. В первую **B6** и последнюю **H6** ячейки данной строки введем соответственно формулы²

=HOPMCTPAC Π (B5) и =1 – HOPMCTPAC Π (G5)

Обязательно *выполним проверку*: сумма значений *p*, должна быть равной единице.

Вычислим наблюдаемое значение критерия $\chi^2_{na\delta n} = \sum_{i=1}^k \frac{(m_i - np_i)^2}{np_i},$

просуммировав с помощью функции СУММ значения **B8 : Н8**. Получим $\chi^2_{\mu a \delta a} \approx 5,52$

Найдем по уровню значимости $\alpha = 1 - \gamma = 1 - 0,95 = 0,05$ и числу степеней свободы v = k - r - 1 = 7 - 2 - 1 = 4, где k = 7 – число интервалов, а r – число параметров распределения (для нормального распределения r = 2), критическое значение критерия $\chi^2_{\kappa p} = \chi^2_{\alpha;v} = \chi^2_{0,05;4}$. Для этого введем в ячейку **B11** формулу

Имеем $\chi^2_{\kappa p} \approx 9,49$.

Сравним наблюдаемое и критическое значения критерия. Так как $\chi^2_{{}_{Rab1}} < \chi^2_{{}_{Kp}}$, то нет оснований отклонить нулевую гипотезу о нормальном распределении генеральной совокупности, из которой извлечена данная выборка.

4) Концы доверительного интервала для математического ожидания определяются соотношениями $\overline{X} \pm \iota_{\alpha,n} \frac{S}{\sqrt{n}}$. Для вычисления зна-

чения $t_{\alpha;n} = t_{0,05;50}$ воспользуемся следующей стандартной функцией Excel

=СТЬЮДРАСПОБР(0,05;50).

² Эго связано с тем, что для функции НОРМСТРАСП имеет место равенство НОРМСТРАСП $(x) = \frac{1}{2} + \Phi(x)$.

Доверительный интервал для среднего квадратического отклонения от имеет вил

$$S \cdot (1-q) < \sigma < S \cdot (1+q).$$

Значение $q = q_{r,n} = q_{0.95:50} = 0,21$ найдем по таблице значений этой nell088 функции (см. приложение).

В результате получим

$$15,23 < a < 16,33, 1,53 < \sigma < 2,34$$
.

5) Вероятность попадания случайной величины Х в заданный интервал (α : β) определяется формулой

$$P(\alpha < X < \beta) = F(\beta) - F(\alpha) = \Phi\left(\frac{\beta - \overline{X}}{S}\right) - \Phi\left(\frac{\alpha - \overline{X}}{S}\right).$$
(8)

Для нахождения вероятности P(14,5 < X < 18,5) вычислим значения

$$\Phi\left(\frac{18,5-\overline{X}}{S}\right)$$
 и $\Phi\left(\frac{14,5-\overline{X}}{S}\right)$ аналогично тому, как это делалось в п. 3.

Задача. Для выборки из задачи лабораторной работы 1 выполните ore. задания рассмотренного выше примера.

ЛАБОРАТОРНАЯ РАБОТА № 3

Тема: Метод наименьших квадратов. Линейная регрессия. Выборочный коэффициент корреляции. Задача 1. Дана таблица экспериментальных данных

		·			1400			me pr						- \	\sim		
x_i	0,25	0,37	0,44	0,55	0,60	0,62	0,68	0,70	0,73	0,75	0,82	0,84	0,87	0,88	0,90	0,95	1
y_i	2,57	2,31	2,12	1,92	1,75	1,71	1,60	1,51	1,50	1,41	1,33	1,31	1,25	1,20	1,19	1,15	1

Задача 1	. Л	ана	таблица	экспе	риментальны	ах данных
----------	-----	-----	---------	-------	-------------	-----------

Требуется:

1) Построить корреляционное поле и высказать предположение о виде функции регрессии У на Х.

2) Методом наименьших квадратов найти коэффициенты уравнения регрессии У на Х. Построить полученную линию на координатной плоскости.

3) Найти интервальные оценки для коэффициентов модельного уравнения регрессии *Y* на *X*, взяв уровень значимости $\alpha = 0.05$.

4) Найти эмпирический коэффициент корреляции и проверить гипотезу о его значимости при уровне значимости $\alpha = 0.05$.

Решение.

1) Для построения корреляционного поля (см. рис. 7) командами Вставка / Диаграмма вызовем Мастер диаграмм и выполним следующие действия:

1. В появившемся диалоговом окне выберем тип диаграммы - точечная. Нажмем кнопку Далее.

2. На следующем шаге на вкладке Диапазон данных в строке Диапазон укажем числовые данные исходной таблицы, выбрав ряды в строках

3. В третьем окне укажем заголовки осей: ось Х (категорий) – Х, ось Ү (значений) – Ү.

4. На последнем шаге поместим диаграмму на имеющемся листе. Нажмем кнопку Готово.

По расположению точек на координатной плоскости можно высказать предположение о линейной регрессионной зависимости У на Х.

Рис. 7. Корреляционное поле для регрессионной зависимости У на Х

2) Согласно выдвинутой в пункте 1) гипотезе эмпирическое уравнение регрессии Y на X имеет вид $\overline{Y}_x = b_0 + b_1 x$. Коэффициенты этого уравнения b_0 , b_1 найдем методом наименьших квадратов. Для этого решим систему

$$\begin{cases} b_0 + b_1 \overline{X} = \overline{Y}, \\ b_0 \overline{X} + b_1 \overline{X^2} = \overline{XY}, \end{cases}$$
(9)

где

$$\begin{cases} b_0 + b_1 \overline{X} = \overline{Y}, \\ b_0 \overline{X} + b_1 \overline{X}^2 = \overline{XY}, \end{cases}$$
(9)
$$\sum_{n=1}^{n} \overline{X}, \quad \sum_{n=1}^{n} \overline{Y}, \quad \sum_{n=1}^{n} \overline{X}, \quad \sum_{n=1}^{n} \overline{X}, \quad \sum_{n=1}^{n} \overline{X}, \quad \sum_{n=1}^{n} \overline{XY}. \quad (10)$$

словые характеристики (10) вычислим средствами Excel аналогично тому, как это делалось в лабораторной работе 1. Для данной задачи получаем

$$\overline{X} = 0,702941, \ \overline{Y} = 1,578235, \ \overline{X^2} = 0,535853, \ \overline{XY} = 1,023041.$$

Договоримся в дальнейшем при выполнении промежуточных вычислений оставлять 6 знаков после запятой, а в конечных результатах -4 знака после запятой.

Система (9) принимает вид

$$\begin{cases} b_0 + 0,702941 \cdot b_1 = 1,578235, \\ 0,702941 \cdot b_0 + 0,535853 \cdot b_1 = 1,023041. \end{cases}$$

Решим ее методом Крамера. Вычислим основной Δ и вспомогательные Δ_0, Δ_1 определители этой системы с помощью встроенной функции МОПРЕД из категории Математические.

$$\Delta = \begin{vmatrix} 1 & 0.702941 \\ 0.702941 & 0.535853 \end{vmatrix} = 1 \cdot 0.535853 - 0.702941 \cdot 0.702941 = 0.041727,$$

 $\Delta_0 = \begin{vmatrix} 1,578235 & 0,702941 \\ 1,023041 & 0,535853 \end{vmatrix} = 0,126564, \ \Delta_1 = \begin{vmatrix} 1 & 1,578235 \\ 0,702941 & 1,023041 \end{vmatrix} = -0,086365.$ Тогда по формулам Крамера имеем

$$b_0 = \frac{\Delta_0}{\Delta} = \frac{0.126564}{0.041727} \approx 3.0332, \ b_1 = \frac{\Delta_1}{\Delta} = \frac{-0.086365}{0.041727} \approx -2.0698.$$

Подставив найденные коэффициенты в эмпирическое уравнение регрессии Y на X, получим $\overline{Y}_x = -2,0698x + 3,0332$.

Проверим найденные значения коэффициентов с помощью статистической функции Excel ЛИНЕЙН. Введем в ячейку F33 формулу =ЛИНЕЙН(B2:R2;B1:R1), для которой в диапазонах B2:R2 и B1:R1 содержатся соответственно

значения у и х_i. Чтобы эта формула была формулой массива, выделим ячейки F33 и G33, нажмем клавишу F2, а затем - клавиши CTRL+ +SHIFT+ENTER.

Изобразим эту прямую на плоскости. Для этого выберем любые две точки, через которые проходит данная прямая, например, (0; 3,0332) и (1,4655; 0). Введем координаты этих точек в таблицу Excel и построим аналогично тому, как это делалось в пункте 1), проходящую через эти точки прямую с помощью Мастера диаграмм, выбрав вид диаграммы "точечная диаграмма, на которой значения соединены отрезками". Результат на рис. 8.

Рис. 8. График линии регрессии У на Х

3) В силу выдвинутого выше предположения о линейной корреляционной зависимости между величинами X и Y модельное уравнение регрессии имеет вид

$$M(Y|X) = \beta_0 + \beta_1 X.$$

Построим интервальные оценки для коэффициентов β_0 и β_1 этого уравнения по формулам

$$\begin{split} b_{0} - t_{\frac{\alpha}{2}, n-2} S_{b_{0}} < \beta_{0} < b_{0} + t_{\frac{\alpha}{2}, n-2} S_{b_{0}}, \\ b_{1} - t_{\frac{\alpha}{2}, n-2} S_{b_{1}} < \beta_{1} < b_{1} + t_{\frac{\alpha}{2}, n-2} S_{b_{1}}, \\ \text{где } S_{b_{0}} = S_{e} \cdot \sqrt{\frac{\overline{X^{2}}}{n\left(\overline{X^{2}} - \left(\overline{X}\right)^{2}\right)}} , \quad S_{b_{1}} = S_{e} \cdot \sqrt{\frac{1}{n\left(\overline{X^{2}} - \left(\overline{X}\right)^{2}\right)}} \end{split}$$

есть средние квадратические отклонения коэффициентов регрессии, а

 $S_e = \sqrt{\frac{\sum (y_i - b_0 - b_1 x_i)^2}{n-2}}$ – среднее квадратическое отклонение ос-

татков $e_i = y_i - b_0 - b_1 x_i$.

Значения функции Стьюдента находим аналогично тому, как это делалось в лабораторной работе 2. Для нахождения значения S_e соста-

вим таблицу (см. рис. 9), в первой строке которой вычислим остатки е... а во второй их квадраты. Формула Excel для вычисления, например. остатка е, имеет следующий вид

=B2-\$G\$32-\$F\$32*B1

Здесь в ячейках **B1** и **B2** находятся значения x_1 и y_1 , а в ячейках **G32** здесь в яченках вт и ве паходатся спользования коэффициентов b_0 и b_1 , поэтому ссылки на эти ячейки должны быть абсолютными.

	H5	9 (4)	≴ =H2-	SGS32-SFS	32*H1	- ,, ,- ,, ,,, ,,, , ,						1.1.1.1	$\partial \mathcal{N}$	
	A	8	Ĉ	D	E	F	G	H	. K. H 1775	J	K	L	M	ĩ
21		X	0,702941									1		
22		<u>7</u>	1,578235	• , , , ,	1							7		and the
23	x;2	0.062500	0.136900	0 193600	0.302500	0.360000	0.384400	0 462400	0.490000	0.532900	0.562500	ມີ 672400	0 205600	1
25	y_i^2	6,604900	5,336100	4,494400	3,686400	3,062500	2,924100	2,560000	2,280100	2,250000	1,968100	1.768900	1,716100	
26	<i>z, y</i> ,	0.642500	0.854700	0.932800	1.056000	1 050000	1.060200	1 028000	1.057002	1 095000	1.057500	1 090600	1 100/00	1
27		$\overline{X^2}$	0,535853	0,002.000	1,000000	1,000000	1,000200	1,000000	1,007000	1,03000	1,007,000	1,050000	1,100400	1
28		Ϋ́ Ϋ́	2,671335											1
29		XΫ	1,023041						1					1
31		Δ	0,041727			<i>b</i> 1	bo		3			• • • • •		
32		Δ ₀	0,126564			-2,0698	3,033176							-
33 34		Δ1	-0,086365		проверка	-2,0698	3,033176	\mathcal{A}				· ··- ···		
59	e,	0,054271	0,042646	0,002468	0,025209	-0,041302	-0,039905	-0,025719	-0,074323	-0,022229	-0,070833	-0,005946	0,015448	臣
60 51	e,'	0,002945	0,001819	0,000006	0,090635	0,001706	0,001592	0,000661	0,005524	0,000494	0,005017	0,000035	0,000239	Ŀ.
62 63		S. Inmsin	0,044543 2,489878		S_{b_0}	0,038711)	.S _{b1}	0,052883					
54 65		2,9368	< \$ ₀ <	3,1296		0-2,2015	< <i>β</i> ₁ <	-1,9381				an An an		÷

Рис. 9

После выполнения необходимых действий получаем следующие резуль-3.1ektporthbin

$$S_e = \sqrt{\frac{0,029757}{15}} \approx 0,044540,$$

$$S_{b_0} = \sqrt{\frac{0.535853}{17(0.535853 - 0.702941^2)}} \cdot 0.044540 \approx 0.038711,$$

$$S_{b_1} = \sqrt{\frac{1}{17(0,53583 - 0,702941^2)}} \cdot 0,044540 \approx 0,052883$$

20

Таким образом, доверительные интервалы для коэффициентов модельного уравнения регрессии имеют вил

 $2.9368 < \beta_0 < 3.1296, -2.2015 < \beta_1 < -1.9381.$

4) Эмпирический коэффициент корреляции найдем по формуле

$$r_{xy}^{*} = \frac{\overline{XY} - \overline{X} \cdot \overline{Y}}{\sqrt{\overline{X^{2}} - (\overline{X})^{2}} \cdot \sqrt{\overline{Y^{2}} - (\overline{Y})^{2}}} \cdot (11)^{10}$$

пение (11) найденные значения

Подставив в соотношение (11) найденные значения

 $\overline{Y^2} = 2,671335, \overline{X} = 0,702941, \overline{Y} = 1,578235, \overline{X^2} = 0,535853, \overline{XY} = 1,023041,$ получим

$$r_{xy}^{*} = \frac{1,023041 - 0,702941 \cdot 1,578235}{\sqrt{0,535853 - (0,702941)^{2}} \cdot \sqrt{2,671335 - (2,671335)^{2}}} \approx -0,995140.$$

Проверить найденное значение можно с помощью статистической функции Excel КОРРЕЛ.

Решение об адекватности линейного уравнения регрессии экспериментальным данным примем на основании критерия Стьюдента. Для этого сравним наблюдаемое значение критерия $t_{\mu a \delta n} = \frac{r_{xy}^* \sqrt{n-2}}{\sqrt{1-(r_{xy}^*)^2}}$ с критическим $t_{\kappa p} = t_{\alpha;n-2}$, которое найдем по уровню значимости α и числу степеней свободы n – 2, где n – количество экспериментальных точек.

В данном случае OHHb

$$t_{maba} = \frac{-0.995140\sqrt{15}}{\sqrt{1 - (-0.995140)^2}} = -39.1391.$$

Используя функцию СТЬЮДРАСПОБР, получаем $t_{sp} = t_{0,05,15} = 2,13$ 1451. Так как $|t_{main}| > t_{\kappa p}$, то выборочный коэффициент корреляции значимо отличается от нуля, т.е. величины Х и Укоррелированы. Следовательно, линейная регрессия модельной функции $M(Y \mid X) = \beta_0 + \beta_1 X$ выбрана удачно (согласуется с экспериментальными данными).

ЗАДАНИЯ ДЛЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Требования к оформлению ИДЗ

8111083

1. Обязательно указать формулы, теоремы, определения математической статистики, которые используются при решении задачи. Указывать формулы Excel и способ решения в Excel не следует.

2. Работа должна содержать номер задания и его условие.

3. На проверку предоставлять печатный вариант (листы не больше формата А4) и электронный вариант ИДЗ.

Задача 1. По данному статистическому материалу опыта требуется:

1. Составить вариационный ряд.

2. Записать таблицу частот и относительных частот.

3. Построить полигон частот и относительных частот.

4. Найти эмпирическую функцию распределения и построить ее график.

5. Вычислить числовые характеристики данной выборки (X_{a} , $D_{a}, \sigma_{a}, D_{ucnp.s.}$, коэффициент вариации V), воспользовавшись их статистическими определениями. Полученные результаты проверить с помощью встроенных функций Excel.

6. Исходя из графика эмпирической функции распределения $F^*(x)$, выдвинуть гипотезу о законе распределения генеральной совокупности.

7. Найти точечные оценки математического ожидания и среднего квадратического отклонения. Записать с их учетом плотности распределения вероятности f(x).

8. С помощью критерия согласия Пирсона проверить предположение о нормальном законе распределения данной выборки.

9. Если случайная величина X распределена нормально, то найти доверительные интервалы для математического ожидания и среднего квадратического отклонения, взяв доверительную вероятность $\gamma = 0.95$.

10. Вычислить вероятность P(36 < X < 42).

Статистические данные для задачи находятся в следующей таблице, из которой берутся 5 строк, начиная с і-й строки, где і – ваш номер в журнале. Например, если ваш номер в журнале 26, то следует взять 26 – 28 и 1 – 2 строки.

	№ строки				Дar	нные	г зад	ачи				0
	1	43	32	44	25	43	40	31	28	41	35	So.
	2	38	41	32	38	24	43	25	37	46	38	
	3	46	49	32	34	31	24	41	50	38	29	
	4	40	31	28	41	35	31	26	34	49	32	
	5	43	25	37	46	38	46	26	38	37	49	
	6	24	41	50	38	29	43	37	46	38	25	
	7	41	32	34	49	44	43	32	44	25	43	
	8	37	31	47	50	34	38	41	32	38	24	
	9	25	37	40	32	35	46	49	32	34	31	
	10	28	44	43	31	44	46	26	38	37	49	
	11	38	35	29	43	38	43	37	46	38	25	
	12	31	26	34	49	32	41	32	34	49	44	
	13	46	26	38	37	49	37	31	47	50	34	
	14	43	37	46	38	25	25	37	40	32	35	
	15	40	31	28	41	35	31	26	34	49	32	
	16	43	25	37	46	38	46	26	38	37	49	
	17	24	41	50	38	29	43	37	46	38	25	
	18	28	44	43	31	44	46	26	38	37	49	
	19	38	35	29	43	38	43	37	46	38	25	
	20	31	26	34	49	32	41	32	34	49	44	
	21	43	32	44	25	43	40	31	28	41	35	
	22	38	41	32	38	24	43	25	37	46	38	
. Ct	23	46	49	32	34	31	24	41	50	38	29	
an	24	46	26	38	37	49	37	31	47	50	34	
9	25	43	37	46	38	25	25	37	40	32	35	
	26	24	41	50	38	29	43	37	46	38	25	
	27	41	32	34	49	44	43	32	44	25	43	
	28	37	31	47	50	34	38	41	32	38	24]

23

Задача 2. По данным следующей таблицы:

1) Построить корреляционное поле и высказать предположение о виде функции регрессии У на Х.

2) Методом наименьших квадратов найти коэффициенты уравнения регрессии У на Х. Построить полученную линию на коорлинатной плоскости

3. Найти интервальные оценки для коэффициентов модельного уравнения регрессии Y на X. взяв уровень значимости $\alpha = 0.05$.

4. Найти эмпирический коэффициент корреляции и проверить гипотезу о его значимости при уровне значимости $\alpha = 0.05$.

Ланные для таблицы определяются следующим образом. Номер варианта і – последняя цифра номера в журнале, число экспериментальных точек из таблицы 10 + і, где і – остаток от деления номера в журнале на 3. Например, если ваш номер в журнале 25, то требуется выполнить вариант 5 с числом экспериментальных точек 11.

Вариант 0.

x_i	0	10	20	30	40	50	60	70	80	9 0	100	110
y_i	0,533	0,552	0,574	0,596	0,619	0,645	0,667	0,690	0,710	0,732	0,756	0,764

			- 1 -	2011		10,0			0,007	10,03	<u> </u>	110 10
	Baj	эиан	т 1.			65	9.					
x_i	75	76	77	80	82	85	88	90	91	92	94	95
y_i	2,1	2,0	2,5	2,4	3,6	4,0	4,1	5,0	5,4	5,1	5,5	6,2

Вариант 2.

			·0· ·									
x_i	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,10	0,11
y_i	0,533	0,552	0,574	0,596	0,619	0,645	0,667	0,690	0,710	0,734	0,765	0,762

X	10	15	20	25	30	35	40	45	50	55	60	65
y _i	1,8	2,7	2,5	4,5	4,4	6,3	6,5	6,5	9,5	9,5	19,4	10,2
5												

Вариант 4.

\boldsymbol{x}_i	31	30	35	42	40	55	48	64	59	70	75	80
y_i	2,0	2,6	3,0	3,9	5,2	7,0	6,2	7,5	8,6	12,2	13,2	14,5

Вариант 5.

\boldsymbol{x}_i	3,0	3,6	4,0	4,5	5,2	5,6	6,0	6,4	7,0	7,5	8,0	9,0
y_i	1,98	1,92	1,93	1,81	1,83	1,70	1,73	1,68	1,60	1,66	1,43	1,41

Вариант 6.

xi	75	76	77	80	82	85	88	90	91	92	93	94
y _i	2,1	2,0	2,4	2,4	3,6	4,0	4,1	5,0	5,4	5,1	5,1	5,4

Вариант 7.

	Вар	иант	6.													
x_i	75	76	77	80	82	85	88	90	91	92	93	94				0
yi	2,1	2,0	2,4	2,4	3,6	4,0	4,1	5,0	5,4	5,1	5,1	5,4]		6	2
	Bap	иант	7.											5	S~	
\boldsymbol{x}_i	0,050	0,070	0,1	00	0,125	0,150	0 0,	175	0,200	0,225	0,2	50	0,275	0,300	0,325	
y_i	0,005	0,052	0,0	12	0,015	0,017	7 0,	025	0,026	0,033	0,0	34	0,043	•0,046	0,048	

Вариант 8.

have a size of the second			<u> </u>						the second se			
y_i	0,005	0,052	0,012	0,015	0,017	0,025	0,026	0,033	0,034	0,043	0,046	0,048
								1		D'		
	Bap	иант 8	8.						البر			
x_i	0	1	2	3	4	5	6	7	8	9	10	11
y_i	0,537	0,552	0,567	0,598	0,619	0,625	0,667	0,690	0,710	0,735	0,756	0,766
	Bap	иант 9).				N	7 1.	<u></u>		_	
r	0	10	20	30	40	50	60	70	80	00	100	110

Вариант 9.

		Dupi		•				11					
	\boldsymbol{x}_i	0	10	20	30	40	50	60	70	80	90	100	110
	y,	0,73	0,75	0,74	0,76	0,79	0,80	0,82	0,85	0,86	0,88	0,90	0,91
	•••••						~						
						1	9						
						65							
						N							
					No.								
					No								
				5	-								
			1.	0×									
			í,										
			N°										
		à	~										
		100											
	~	6)											
	e)											
<u> </u>)												

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Айвазян С.А. и др. Прикладная статистика: Исследование зависимостей. М.: Финансы и статистика, 1985.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высш. шк., 1999.
- Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистики. – М.: Высш. шк., 1999.
- 4. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. М.: Наука, 1977.
- 5. Калинина В.Н., Колемаев В.А. Теория вероятностей и математическая статистика. М.: ИНФРА-М, 2001.
- 6. Коваленко И.Н., Филиппова А.А. Теория вероятностей и математическая статистика. – М.: Высш. шк., 1973.
- 7. Колемаев В.А. и др. Теория вероятностей и математическая статистика. М.: Высш. шк., 1991.
- 8. Лихолетов И.И. Высшая математика, теория вероятностей и математическая статистика. Мн.: Выш. шк., 1976.
- 9. Микулик Н.А., Рейзина Г.Н. Руководство к решению технических задач по теории вероятностей и математической статистике. Мн.: Выш. шк., 1977.
- Нейман Ю. Вводный курс теории вероятностей и математической статистики. М.: Наука, 1968.
- 11. Пугачев В.С. Теория вероятностей и математическая статистика. М.: Наука, 1979.
- 12. Савич Л.К., Смольская Н.А. Теория вероятностей и математическая статистика. – Мн.: Адукацыя і выхаванне, 2006.
- 13. Себер Дж. Линейный регрессионный анализ. М.: Мир, 1980.
- Феллер В. Введение в теорию вероятностей и ее приложения. Т. 2. М.: Мир, 1967.
- 15. Худсон Д. Статистика для физиков. М.: Мир, 1967.

16. Щиголев Б.М. Математическая обработка наблюдений. – М.: Наука, 1969.

приложение

Таблица значений $q = q(\gamma, n)$

$\begin{array}{ c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	
n0,950,990,99951,372,675,6461,092,013,8870,921,622,9880,801,382,4290,711,202,06100,651,081,80110,590,981,60120,550,901,45130,520,831,33140,480,781,23150,460,731,15160,440,701,07	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\sim
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
14 0,48 0,78 1,23 15 0,46 0,73 1,15 16 0,44 0,70 1,07	
15 0,46 0,73 1,15 16 0,44 0,70 1,07	
16 0,44 0,70 1,07	
17 0,42 0,66 1,01	
18 0,40 0,63 0,96	
19 0,39 0,60 0,92	
20 0,37 0,58 0,88	
25 0,32 0,49 0,73	
30 0,28 0,43 0,63	
35 0,26 0,38 0,56	
40 0,24 0,35 0,50	
45 0,22 0,32 0,46	
50 0,21 0,30 0,43	
60 0,188 0,269 0,38	
70 0,174 0,245 0,34	
80 0,161 0,226 0,31	
9 0 0,151 0,211 0,29	
100 0,143 0,198 0,27	
150 0,115 0,160 0,211	
200 0,099 0,136 0,185	
250 0,089 0,120 0,162	

содержание

Лабораторная работа №1	
Лабораторная работа № 2	
Лабораторная работа № 3	
Задания для индивидуальной работы	
Рекомендуемая литература	
Приложение	M ^{MC} 27
пектронный архив библиот	SKMIZ

.

...дание ...лченко Ирина Васильевна МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Практ

otern

Технический редактор А.Н. Гладун Компьютерная верстка А.Л. Позняков Корректор Г.В. Тетерукова

K aptil apti Подписано в печать 3.02.2009. Формат 60х84/16. Гарнитура Times New Roman Cyr. Усл.-печ. л. 1,4. Уч.-изд. л. 1,35. Тираж 80 экз. Заказ № 42.

Учреждение образования "Могилевский государственный университет им. А.А. Кулешова", 212022, Могилев, Космонавтов, 1 ЛИ № 02330/278 от 30.04.2004 г.

Отпечатано на ризографе отдела оперативной полиграфии МГУ им. А.А. Кулешова. 212022, Могилев, Космонавтов, 1