
N. M. R O G A N O V S K I J

A X IO M A T IC  A P P R O A C H  TO T H E  T E A C H IN G  O F  

S O L ID  G E O M E T R Y  IN  G R A D E  IX *

Our discussion is largely concerned with the concept o f reflection at a plane. 
(The great value of symmetry considerations in teaching is pointed out in [5] 
for example.) Two fundamental problems arose when we introduced this con­
cept into the high-school course of solid geometry: The first was to decide at 
which point in the course to introduce it, and the second was the development 
of an acceptable and effective teaching methodology. The two problems are of 
course related and must be considered together. The usual method adopted 
in solid geometry textbooks is to base the discussion o f reflection at a plane 
on the perpendicularity of straight line and planes, i.e. the approach is non- 
axiomatic. Although there are definite advantages in this approach, it does 
suffer from a very important disadvantage: the transformation is introduced 
quite late, so that it cannot be used throughout the theoretical course or in 
the solution o f exercises. Axiomatic definition of reflection at a plane**, on 
the other hand, ensures that the transformation is introduced quite early in 
the solid geometry course.

Before the solid geometry course proper was started we systematized and 
extended the students’ ideas on the deductive structure of geometry, and 
formulated and generalized the axioms o f plane geometry.

The 9th grade solid geometry course was given on a relatively broad axio­
matic base including the axioms o f joining, order, parallelism, and reflection 
at a plane.

Axioms of reflection at a plane and their role in the construction o f a 
solid geometry course will be discussed below in greater detail. Axioms 
involving reflection at a plane were approached through physical observa­
tions of reflection from a plane mirror. These experiments are simple and can 
be carried out not only in class but also at home. They are very helpful in 
providing a descriptive and not merely formal interpretation o f the axioms of 
reflection at a plane. Although a plane mirror reflects only a half-space, it is 
readily verified by visual inspection that there is a point-to-point correspond­
ence between object and image spaces, and that points apparently behind the 
mirror can be reflected and produce images in front o f the mirror. Reflection

* Translated from Matematika v Skole 1969, No. 4, 60-63: ‘Opyt aksiomaticeskogo 
izlozenija kursa stereometrii IX klasse’.
** The axiomatic definition of the concept of reflection at a plane is based on axioms of 
reflection at a plane given in [4].
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at a plane is very effectively illustrated with the aid o f  a thin plane mirror 
coated on both sides. In the course o f the plane-mirror experiments the stu­
dents are guided towards an independent formulation o f each reflection 
axiom.

Thus, the first axiom is arrived at by carrying out the following exercises.
Exercise 1. When you look into a mirror you see an image of yourself. 

Where is this image located: on the mirror or behind it? Verify your guess 
by experiment.

Hint. Touch the face o f the mirror with, say, the point o f a pencil, and look  
at the mutual disposition of the pencil’s image and the plane o f the mirror.

The student can readily verify that points on the surface o f the mirror give 
rise to images that are also on the surface, whereas points well in front o f the 
mirror correspond to images behind the mirror.

Exercise 2. Make a mark on a piece o f paper and indicate it by the letter A. 
Reflect this point in a mirror and note the position of its image A'. Find the 
position o f the image o f А' when this in turn is reflected.

Hint. It is useful to employ a mirror coated on both sides for this experi­
ment. The plane o f the mirror should coincide with the plane o f symmetry of 
the eyes of the observer.

This exercise demonstrates the one-to-one correspondence between object 
and image points: if  a point A  transforms into a point А' on reflection, then 
А' transforms into A  after the same operation.

This is followed by the explicit formulation o f the axiom:
Axiom  1. Each plane in space defines a reflection transformation which 

transforms points in one half-space into points in the other half-space and 
vice versa; points on the reflection plane itself remain fixed.

We shall represent the above transformation symbolically as follows:

А ' s  a (A ),

which should be read a s: “ Reflection o f a point A  in plane a results in A !” or 
“The point А' is the image of A under a” .

The other axioms o f reflection at a plane can be introduced in a similar way.
Axiom 2. Reflection o f a straight line at a plane results in a straight line, 

and the order o f points remains unchanged in this transformation.
If, as a result o f reflection in plane a, a straight line a is transformed into a 

straight line a', we write

a ' =  a(a).

Consequence 1. Reflection of a segment at a plane results in a segment, and 
reflection o f a ray results in a ray.
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172 N. M. R O G A N O V S K I J

The following definitions have to be introduced:
Definition 1. The plane defining the reflection is called the reflection plane, 

and the two figures that correspond to each other on reflection are said to be 
reflection images.

In addition to the phrase “reflection at a plane” we use “mirror reflection”, 
“symmetry with respect to a plane” , and so on.

Definition 2. If a maps A  into A', then the inverse a -1 o f a maps A! into A 
(for any A, A').*

Definition 3. Transformations which are their own inverses are called in­
volutions.

Theorem 1. The reflection image o f a plane at a plane is a plane.
Proof. Let A, B, and С be three non-collinear points on a plane /?, and let 

A' =  cc(A), B' =  a(B), C' =  a(C ) (Figure 1). Axioms 1 and 2 show that A', B \  
and C' are non-collinear. Let ji' be the plane passing through these points. 
We have to prove that /?' =  «(/?), i.e. that the reflection o f  jS in a is /?'.

* The Russian text has been corrected.
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(1) We shall show that at a all points o f /? are reflected into points o f  /5'.
If points on P are also points on the straight lines AB, BC, and CA then

by Axiom 2 they transform into points lying on the straight lines А'В', B'C', 
and C'A' and, consequently, into points on [f.

Suppose now that M  is a point on ft that is not a point on any of these 
straight lines. We shall suppose that the straight line A M  cuts the line BC  at 
P. Hence the point ? 's a ( P ) e f i 'C 'c j 5 ' ,  and the straight line A 'P '<=/?', but 
cc(M )= M 'eA 'P '. Therefore М 'є /Г . Thus at a all points of the plane (3 are 
reflected into points o f the plane /?'.

(2) It only remains to prove that each point on the plane Р' is the image o f  
a point on the plane p. To prove this we must consider the transformation in 
the inverse direction.

The concept o f invariance is essential in the sequel.
Definition 4. Any particular relation between geometric figures that is 

unaffected by reflection from a plane is said to be invariant under this trans­
formation.

The following axiom states the invariance o f symmetry relations between 
geometric figures under all reflections in a plane.

Axiom  3. If the reflection at the plane P transforms a plane a into a plane 
a', then a pair of figures which are mutually symmetric with respect to a will 
transform into a pair o f figures which are mutually symmetric with respect to 
a ’.

The following axioms are special axioms o f Euclidean geometry:
Axiom  4. Two different points in space determine one and only one reflec­

tion plane for these points.
Axiom  5. Two different rays with a common origin determine one and only 

one plane o f reflection for these rays.
Consequence 2. Since reflection in a plane constitutes a one-to-one corre­

spondence, and a plane reflected by a plane becomes a plane, it follows that 
the following relations o f  straight lines are invariant under all reflections in a 
plane: intersecting, parallelism, and skewness.

Consequence 3. If Meat, then a ( M)  =  M.  Conversely, if  a( M)  =  M  then 
M e  a.

Consequence 4. The point o f intersection o f reflection image straight lines 
lies on the reflection plane.

Proof. Let a (a) =  a' and a x a '  =  A. We then have a(A) =  a { a x a  ) =  a x a  =  
A, and hence a ( A ) = A ,  so that by Consequence 3 we have Aery..

Definition 5. When a figure and its image in a plane coincide, the figure is 
said to be invariant under this transformation. Among the invariant figures 
there are the fixed figures, i.e. figures each point of which is invariant on 
transformation.
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The following property is particularly important for the introduction o f the 
concept o f a perpendicular to a plane.

Consequence 5. A  straight line passing through two different points that 
are reflection images o f each other is an invariant line.

Proof. Let a (A )s A '.  Then a(AA') =  A'A, but A'A and AA' are identical 
straight lines, so that A A '= A 'A , i.e. A A ' is a straight line invariant on reflec­
tion in the given plane.

Definition 6. A  straight line that is invariant under reflection at a plane, 
but does not belong to it, is called a perpendicular to that plane. The plane 
is then said to be perpendicular to the straight line.

This is readily illustrated by placing the point o f a pencil in contact with 
the surface o f the mirror and adjusting its position until the pencil and its 
image lie on the same straight line.

Theorem 2. A  plane passing through two different points that are reflection 
images o f each other is an invariant plane.

Proof. Let a(A) =  A', А є / 3 and A'ef t  (Figure 2). We shall prove that 
a(/?)=j3. Let us consider the straight line a = A A ' .  Suppose that A A ’ x a = B .  
The planes a and jS have a common point В  and intersect along the straight 
line b. We have a (a) =  a!= a  (Consequence 5) and a (b )= b ' =  b (Consequence

Fig. 2.

Эл
ек
тр
он
ны
й а
рх
ив

 би
бл
ио
те
ки

 М
ГУ

 им
ен
и А

.А.
 Ку
ле
шо
ва



T H E  T E A C H I N G  OF S O LI D  G E O M E T R Y  I N  G R A D E  IX 175

3). Suppose that a (P )= P ';  then since a'c:/?' and &'<=/?' whereas b '= b  and 
a! =  a, it follows that b<=p' and a c /J '. The planes p  and /?' have in common 
two intersecting straight lines. Therefore /?=/?'.

It follows that a([j) =  [3.
Definition 7. A  plane that is invariant under reflection at a given plane, and 

is different from it, is said to be perpendicular to the given plane.
Reflection at a plane is used to define the important concept o f  congruence 

of arbitrary figures.
Definition 8. Two figures are said to be congruent if  one o f them transforms 

into the other by a number of successive reflections at planes. Two figures are 
said to be properly congruent if one of them is transformed into the other as 
a result o f the successive application o f an even number o f reflections at 
planes. Two figures are said to be improperly congruent if  one o f them is 
transformed into the other by a successive odd number of reflections at planes.

The students are told that the properly congruent figures are the congruent 
and equally oriented figures, whereas the improperly congruent figures are 
the congruent and oppositely oriented ones.

Definition 9. A  transformation that is obtained by successive reflections at 
planes is called an isometry.

The class is then told that by isometry each figure can be made to “occupy” 
any position in space. Isometry can be used, for example, to transform any 
given segment into a segment on a given straight line in space. Figure 3 shows 
a possible method o f transforming a segment AB  into a segment A'B' lying 
on a straight line I and extending from a given point А' in a given direction. 
This is achieved first by transforming A  into А' with the aid o f the reflection 
plane a o f these two points (Axiom  4), and transforming the resulting segment 
A'B  by a new reflection at the reflection plane a' o f I and A'B, into the re­
quired segment on the line I (Axiom 5). The segment AB  could be transformed 
into the segment on I extending in a given direction from the point А' on it in 
the following way. First we transform В  into A', and then reflect the resulting 
segment А'A x at the reflection plane of / and A'A± into the required segment 
on I.

It is possible to select an infinite set of other reflections at planes which 
would lead to the same result. The problem then arises as to what is the mu­
tual disposition o f the segments obtained in this way on the straight line I. 
Experiment shows that these segments coincide. We thus arrive at the last 
axiom, which together with Axioms 1-5 completely covers the concept of 
reflection at a plane.

Axiom  6. Whatever the isometry that is used to transform a given segment 
into a segment lying on a given straight line, and extending from a given 
point on this line in a given direction, we always obtain the same segment.
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176 N. M. R O G A N O V S K I J

Thus, Axiom 6 states that the segment extending on a given line from a 
given point in a given direction, and congruent with a given segment, is 
uniquely determined.*

This is then used to derive the following consequences.

Fig. 3.

Consequence 1. I f from the common origin of two rays (which are reflec­
tion images o f each other with respect to a plane) we lay out two congruent 
segments, then their endpoints will be reflection images with respect to the 
given plane.

Consequence 8. Reflection images lie on (a) a perpendicular to the reflection 
plane, (b) in different half-spaces determined by the reflection plane, (c) at 
equal distances from the point of intersection of the reflection plane and the 
perpendicular drawn through the two points.

It is then a very simple matter to prove an important theorem o f the theory 
o f reflection at a plane, which ensures the most fundamental applications of 
this transformation.

* The Russian text has been corrected.
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Theorem 3. The reflection plane o f two different points is the locus of 
points equidistant from the two given points.

Proof. (1) Let a(A) =  A' and P e a  (Figure 4). The segments AP  and A'P  are 
congruent (Definition 8), and this means that all points on the reflection 
plane o f points A and A ’ are equidistant from these points.

Fig. 4.

(2) Suppose that the point Q does not belong to the plane a. Moreover, let 
us suppose that the segment AQ  is equal to the segment A'Q. According to 
Consequence 7 there is a plane a' such that a '(A )= A ', Q ea'. The plane a' 
cannot coincide with the plane a, since the point Q would then lie in a, which 
is in conflict with the original choice. However, we then find that the points 
A  and A' are reflection images with respect to two different planes a and a'. 
This is in conflict with Axiom 4 and, therefore, the segment AQ  is not equal to 
A'Q.

By (1) and (2) we have established the validity of the above theorem.
The above material forms the basis for a solid geometry course.
As an illustration o f the use of symmetry considerations, let us give a proof 

of at least one theorem from the grade IX solid geometry course.
Theorem 4. If one o f two parallel straight lines is perpendicular to a plane, 

then the other straight line is also perpendicular to this plane.
Proof. Let a ±  a and b || a (Figure 5). We shall prove that b L a . Since
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a J_ a, we have a (a )= a . Suppose that a(b) =  b'. The parallelism o f the two 
straight lines is invariant under reflection. Therefore b' || a. Only one straight 
line parallel to a can be drawn through the point A '=  b x  a. Hence b '= b, i.e. 
<x(b)=b, and this means that b L  a (Definition 6).

It is clear that, in contrast to the “classical” proof in the textbook by A. P. 
Kiselev, we have not used any additional constructions, and the proof is 
distinguished by its simplicity and elegance.

The above approach has been used by the author at the V. I. Lenin 
Boarding School in academic years 1967/68 and 1968/69. The approach was 
found to be satisfactory, and the use o f symmetry considerations in the main 
course and in the solution o f exercises attracted considerable interest and 
became an important means o f mathematical development.

Reflection at a plane was most widely used in connection with the theme of 
“perpendicularity in space” . It was found that the majority o f the students 
assimilated quite well the entire material and acquired correct habits in its 
application.

The time spent on individual aspects was divided as follow s:
(1) Systematization and generalization of ideas from plane geometry on 

the deductive structure o f geometry -  4 hours.
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(2) Joining and order axioms for space -  4 hours.
(3) Axioms on reflection at planes and their consequences -  8 hours.
(4) Parallelism in space -  13 hours.
(5) Perpendicularity in space -  14 hours.

Moscow
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(Titles translated)
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