ПРИРОДНЫЕ СОБЫТИЯ ВЕРХНЕГО ГЛЯЦИОПЛЕЙСТОЦЕНА НА ТЕРРИТОРИИ БЕЛАРУСИ

(по палинологическим данным)

Еловичева Ядвига Казимировна,

заведующий кафедрой физической географии мира и образовательных технологий, БГУ, доктор географических наук, профессор г. Минск, Беларусь, yelovicheva@yandex.ru

Ключевые слова: гляциоплейстоцен, муравинское межледниковье, поозерское оледенение, оптимум, межоптимальное похолодание, голоцен.

Keywords: Glaciopleistocen, Murava interglaciation, Poozerje glaciations, optimum, interoptimum cooling, Holocene.

Аннотация. В статье показана валидная интерпретация скоррелированных изотопно-кислородных и палинологических записей отложений в разрезе Гранд Пиль (Франция) и стратотипических разрезах Беларуси.

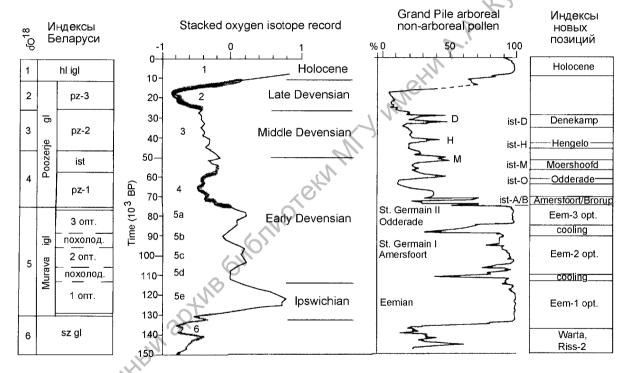
Abstract. The article shows the validity interpretation of the correlated oxygen isotope and palynological sediment records in the sections of the Grand Pile (France) and stratotypical sections in Belarus.

Изменение климата в гляциоплейстоцене (последние 800 тыс. лет) нашло свое отражение в устойчивом развитии компонентов природной среды на обширной территории. Используя данные палинологического метода исследований древне-озерных и болотных отложений представилось воз-

можным проследить закономерности динамики палеофитоценозов и состава палинофлоры в пределах Беларуси [1, с. 106] и скоррелировать их со смежными регионами.

Несмотря на лучшую изученность толщи верхнего гляциоплейстоцена (муравинское/эемское/микулинское межледниковье и поозерское/вюрмское/ вислинское оледенение) в сравнении с более древними его горизонтами, мнение о палеогеографии и хронологии этого длительного этапа весьма долгое время оставалось неоднозначным. Это было связано с изучением соответствующих отложений по редкой серии образцов и не сплошным отбором, а также остававшейся в течение многих десятилетий практически неизменной точкой зрения ученых на однооптимальность межледниковий и ледниковый возраст перекрывающих осадков. По этим представлениям эемское (муравинское) межледниковье отвечало малой части стадии 5 – лишь 5-е. И только на основе специального бурения и получения непрерывных геологических колонок керна донных океанических и морских осадков, а также материкового льда, почвенно-лессовых серий и их последующего детального изучения стало возможным появление с конца XX в. непрерывных изотопнокислородных шкал на геохронологической основе (Атлантической, Тихоокеанской, Индийской), континентальных морских образований (Каспийской) и крупных озер (Байкальской), изотопно-кислородных и углеродно-изотопных шкал из воды покровных ледовых толщ (Гренландской, Антарктической), изотопно-кислородной записи LR04 по бентосным фораминеферам, континентальных лессово-почвенных серий Евразии (Китайской, Восточно-Европейской), шкал по изменению кальцита пресноводных карбонатных отложений в ледниковой области Европы и Северной Америки, дополнивших астрономическую, инсоляционую и палеомагнитную шкалы.

Наряду с этим и континентальные толщи палеоводоемов гляциоплейстоцена были изучены с гораздо большей детальностью: сплошным опробованием и учащенным (каждые 2–5 см) отбором проб из керна скважин и естественных обнажений, приданием роли каждой древесной породе на диаграммах, наличием сукцессии палеофитоценозов для межледниковых толщ в целом и для каждого оптимума в целях оценки инситности находок растительных микрофоссилий в породе или их переотложения. В результате на основе детальной микростратиграфии были разработаны подробные локальные (Лихвинская, Араповичская, Муравинская, Нижнинская, Ишкольдская, Колодезская, Вольное и другие по моллюскам, пыльце и спорам) и региональные климато- и биостратиграфические шкалы на Восточно-Европейской равнине, сопоставленные с общей изотопно-кислородной шкалой. В дополнение к этому, рекомендации ученых XIV Конгресса INQUA — 2003 г. (Америка, штат Невада, г. Рино) по отнесению александрийского


(гольштейнского, лихвинского) межледниковья к 11-й изотопно-кислородной стадии показали валидность наших новых стратиграфических построений, а также и принятой в России общей стратиграфической шкалы четвертичной системы (2011 г.).

Обобщение новых материалов привело к утверждению единой Международной изотопной шкалы (МИС) на геохронологической основе, в которой межледниковые и ледниковые горизонты отвечали самостоятельным (полным) изотопным ярусам, а валдайский (поозерский) ледниковый – даже трем: 2-3-4. С новых позиций муравинское межледниковые занимает ныне всю стадию МИС-5. Детальные палинологические диаграммы отложений муравинского межледниковья на Беларуси свидетельствуют о его весьма сложной палеогеографической обстановке: наличии раннеледниковья, трех климатических оптимумов и разделяющих их межоптимальных похолоданий (не в ранге оледенений!), позднемежледниковья [1, с. 125]. В связи с чем наиболее известные зарубежные хронологические записи требуют существенного переосмысливания в их прочтении.

Так, представленная на рисунке поздненеоплейстоценовая (последние 130 тыс. лет) морская изотопно-кислородная и палинологическая (по соотношению пыльцы древесных и недревесных растений) записи в разрезе Гранд Пиль на юго-востоке Франции [3, с. 216] весьма адекватно отразили смену климата. Однако интерпретация указанных кривых приобрела иной палеогеографический аспект: эемское (инсвичское, муравинское) межледниковье четко знаменует наличие улановского раннемежледниковья, трех климатических оптимумов (чериковский, комотовский, богатыревичский на Беларуси) и разделяющих их двух похолоданий (борховское и дорошевичское на Беларуси), гончаровского позднемежледниковья в объеме всей МИС-5.

Последующие этапы развития девенсийского (поозерского, валдайского, вислинского) оледенения отразили сложность и его палеогеографической обстановки, заключавшейся в чередовании многочисленных стадиалов и межстадиалов, мегастадиалов и мегаинтерстадиалов [2, с. 18]. При этом ход изотопно-кислородной кривой четко выразил постепенное снижение теплообеспеченности и проявление ее минимума в конце оледенения, сменившегося впоследствии новой межледниковой голоценовой эпохой (последние 10300 лет).

Таким образом, авторские материалы палинологических исследований континентальных осадочных образований муравинского межледниковья и поозерского оледенения находятся в согласии с изотопно-кислородными шкалами, свидетельствуя об устойчивости становления и развития растительности межледниково-ледникового ритма стадии МИС-5 на обширной территории Европейской равнины.

Поздненеоплейстоценовая (последние 130 тыс. лет) морская изотопно-кислородная запись (британская номенклатура) и древесная пыльцевая запись в разрезе Гранд Пиль (юго-восток Франции).

Интерстадиалы по индикации Нидерландов (по D. Bowen, 1978, р. 216)

Литература

. Еловичева, Я.К. Эволюция природной среды антропогена Беларуси / Минск: Бел-

- СЭНС, 2001. 292 с. 2. Еловичева Я.К., Санько А.Ф. Палиностратиграфия отложений поозерского (висту-
- лианского) оледенения Беларуси // Літасфера. № 10–11. Минск, 1999. С. 18–28.

 3. Bowen, D.Q. Quaternary geology: a stratigraphic framework for multidisciplinary work, Oxford: Pergamon Press, 1978. 221 pp.