HAPOZHAN ACBETA 5'201

УЧЕБНОЕ ИССЛЕДОВАНИЕ КАК ДЕЙСТВЕННЫЙ ИНСТРУМЕНТ ПОЗНАНИЯ

Модель организации обучения предметам естественнонаучного цикла

В. М. Кротов, доцент кафедры общей физики Могилевского государственного университета им. А. А. Кулешова, кандидат педагогических наук

В основе концепции построения содержания учебных предметов естественнонаучного цикла лежит системно-деятельностный подход, который предполагает формирование и развитие у учащихся, во-первых, специальных предметных (знаниевых) ориентаций (знания, умения, навыки, опыт творческой деятельности, умение само-

стоятельно приобретать знания и синтезировать новое знание на основе усвоенных элементов системы предметных знаний), во-вторых, системных ориентаций (способов деятельности, применимых как в рамках образовательного процесса, так и в реальных жизненных ситуациях), создающих базис для непрерывного самообразования и предстоящей профессиональной деятельности.

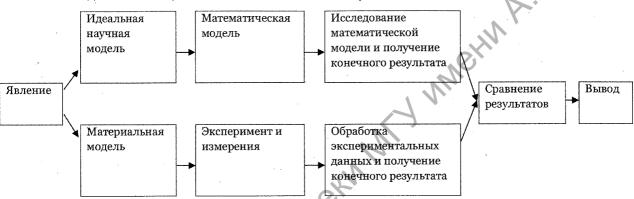
сновными задачами изучения учебных предметов естественнонаучного цикла являются овладение учащимися исследовательскими умениями (проводить наблюдения, планировать, выполнять и оценивать результаты экспериментов, выдвигать гипотезы и строить модели, применять полученные знания для объяснения разнообразных явлений и свойств веществ), навыками оценивания достоверности научной информации и использования предметных знаний в практической деятельности. Решению этих задач в полном объеме не способствует применение модели обучения, реализующейся через систему комбинированных уроков. Инновационная модель обучения предметам естественнонаучного цикла создана и апробируется в рамках работы республиканской инновационной площадки «Внедрение модели организации обучения как учебного исследования учащихся (предметы естественнонаучного цикла)» в СШ №5 г. Могилева, гимназии №4 г. Могилева, Лицее БГУ, гимназии г. Кировска, СШ №2 г. Чаусы (2014-2017 гг.).

В основе описываемой модели лежит идея модульного построения содержания обучения. Структурирование предметных знаний включает группирование их элементов в системы,

обладающие относительной самостоятельностью и позволяющие в рамках 5–8 уроков обеспечить выполнение учащимися заданий всех этапов познавательной деятельности. Такие системы структурных элементов предметных знаний называют модулями содержания обучения (учебными модулями).

Модульное построение предметных знаний позволяет:

- организовать эффективное планирование учащимися познавательной деятельности;
- четко определять эталоны усвоения предметных знаний;
- □ рационально использовать учебное время;
- □ применять современные образовательные технологии, дидактические средства обучения;
- □ проводить объективную оценку знаний и умений школьников;
- эффективно организовывать рефлексию познавательной деятельности учащихся [4].


В процессе внедрения инновационной модели важно соблюдение принципа самостоятельности. К выводу о необходимости организации учения как самостоятельной познавательной деятельности учащихся в свое время пришел известный психолог Л. С. Выготский. Он обосновал следующие теоретические позиции. Во-первых,

БАНК МЕТОДЫК І ТЭХНАЛОГІЙ

в основу образовательного процесса должна быть положена личная деятельность учащегося, и все искусство учителя сводится только к тому, чтобы направлять и регулировать эту деятельность. Во-вторых, прежде чем призвать учащегося к познавательной деятельности, необходимо его заинтересовать, установить, что он готов к этой деятельности и будет действовать сам, учителю же остается только направлять его [1].

Под самостоятельной познавательной деятельностью учащихся будем понимать такую их деятельность, при которой в специально созданной ситуации они самостоятельно:

- 🗖 формулируют познавательные цели;
- описывают модель результата познавательной деятельности;

Анализ приведенной схемы позволяет выделить этапы проведения учащимися учебного исследования.

- 1. Выявление и формулировка проблемы.
- 2. Формулирование целей, задач и гипотезы исследования.
 - 3. Создание экспериментальной установки.
- 4. Проведение исследования, сбор данных (накопление фактов, наблюдений, доказательств).
- 5. Соотношение данных и умозаключений, анализ и синтез.
- 6. Подготовка отчета, обоснование решения проблем.
 - 7. Выступление с сообщением.
- 8. Переосмысление результатов исследования в ходе ответов на вопросы, через обучение одноклассников (проверка гипотез).
- Построение выводов, обобщений, заключений [5].

Подготовка к применению описываемой инновационной модели заключается в:

🗖 подбирают или создают способы и сред-

 выполняют запланированные действия, оценивают и осознают степень достиже-

результатов познания от запланированной модели, оценивают свое эмоциональ-

ное состояние и планируют способы пре-

одоления возникших трудностей [4].

должны соответствовать методам научного познания базовой науки. Основным методом в

естествознании является экспериментальный.

Его содержание и структуру можно отразить

следующей блок-схемой [4]:

Методы учебных исследований учащихся

ния запланированных результатов; осознают причины отклонения реальных

ства конкретных действий;

- □ выделении в содержании темы знаний, составляющих базу для выполнения исследовательских заданий;
- подборе исследовательских заданий, выполнение которых обеспечивает освоение учащимися учебной программы;
- □ подготовке необходимых приборов и принадлежностей;
- □ выборе ориентировочной основы деятельности учащихся с учетом уровня их обучаемости и обученности.

При тематическом планировании учебной работы содержание каждой темы программы распределяется по учебным модулям. Приведем пример тематического планирования учебного процесса в 8 классе по теме «Тепловые явления» [5].

1	Nº	модуля	Название модуля	Количество часов	Тип урока			
)F	,	1	Количество теплоты	9	1.1 Вводное занятие. Планирование учащимися по			
		1			знавательной деятельности			
					1.2 Выполнение экспериментальных заданий и подго-			
					товка презентаций			
					1.3 Социализация			
			•	·	1.4 Лабораторная работа			
					1.5 Решение задач			
					1.6 Лабораторная работа			
L				,	1.7 Решение задач			

			1.8 Обобщение и систематизация знаний. Рефлексия познавательной деятельности 1.9 Самостоятельная работа
2	Фазовые переходы	9	2.1 Вводное занятие № 1. Планирование учащимися познавательной деятельности
			2.2 Вводное занятие № 2
			2.3 Выполнение экспериментальных заданий и подготовка презентаций
		•	2.4 Социализация
			2.5 Решение задач
			2.6 Решение задач
			2.7 Решение задач
			2.8 Обобщение и систематизация знаний. Рефлексия
			познавательной деятельности
			2.9 Контрольная работа

По каждому учебному модулю этой темы учащимся предлагается выполнить в группах численностью 3–4 человека несколько экспериментальных заданий.

Модуль «Количество теплоты»

- 1. Исследование зависимости количества теплоты *Q* при нагревании тела от рода вещества.
- 2. Исследование зависимости количества теплоты Q при нагревании тела от массы этого тела m.
- 3. Исследование зависимости количества теплоты Q при нагревании тела от изменения температуры этого тела Δt .

Модуль «Фазовые переходы»

- 1. Исследование зависимости количества теплоты Q, необходимого для плавления вещества массой m, от рода вещества.
- 2. Исследование зависимости количества теплоты Q, необходимого для плавления вещества, от массы вещества.
- 3. Исследование зависимости между количеством теплоты при испарении вещества Q и массой вещества m.
- 4. Исследование зависимости между количеством теплоты при испарении вещества и родом вещества.

В качестве форм организации учебного познания можно выделить следующие **типы уроков**: вводные, уроки выполнения учебных исследований, социализации результатов исследований, применения знаний, обобщения и систематизации изученного, диагностики уровня усвоения знаний [5].

На вводных уроках учитель организует планирование учащимися познавательной деятельности, восприятие предметных знаний, составляющих базу для выполнения исследовательских заданий. Средствами наглядности на этом этапе могут быть логико-структурные схемы, таблицы, схемы-ромашки. Под логико-структурной схемой в данном случае понимается графическое представление многосторонних связей и отношений между структурными элементами знаний. Логикоструктурная схема представляет собой древовидную графическую классификационную схему, в которой имеются узлы и дуги, соединяющие их. В узлах записываются названия учебных элементов (УЭ), а дуги (линии) показывают иерархические связи УЭ. Расположенные в корне или вершине графического дерева УЭ называют исходными. От них расходятся дуги к производным УЭ.

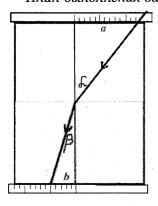
На уроках выполнения учебных исследований учащиеся работают в подгруппах. По каждому учебному модулю учитель готовит 3—4 исследовательских задания (они не дублируют лабораторные и практические работы по учебным дисциплинам), а также конкретные рекомендации. Анализ теоретических основ выполнения учащимися учебных исследований и целей обучения в средней общеобразовательной школе позволил определить оптимальную структуру рекомендаций для учащихся: тема исследования, важная информация, цель исследования, оборудование, гипотеза исследования, план выполнения задания, вывод. Приведем пример рекомендаций по выполнению исследовательского задания [5].

Тема. Законы преломления света.

Важная информация. Под преломлением света понимают явление изменения направления распространения света при достижении им поверхности раздела двух сред при переходе из одной среды в другую.

При описании преломления используются такие понятия, как падающий луч, преломленный луч, угол падения и угол преломления. Угол падения — это угол между падающим лучом и перпендикуляром, восстановленным в точке падения луча к поверхности раздела прозрачных сред. Угол преломления — это угол между преломленным лучом и перпендикуляром, восстановленным в точке падения луча к поверхности.

Преломление света проявляется одновременно с отражением света. Экспериментально можно установить законы преломления.


БАНК МЕТОДЫК І ТЭХНАЛОГІЙ

Цель исследования:

Оборудование: цилиндрический прозрачный стаканчик, вода, две измерительные линейки, тонкий стержень, равный по высоте стаканчику (зубочистка), кусочек пластилина, лазерная указка как источник света.

Гипотеза (предположение о соотношении углов падения и преломления светового лича):

План выполнения задания

- 1. Поставьте стаканчик на стол и измерьте его высоту h = ... мм. Установите стаканчик на одну из линеек.
- 2. На тонком стержне на расстоянии от конца, равном половине высоты стаканчика h/2, сделайте метку ручкой или маркером. Затем к этому концу прикрепи-

те кусочек пластилина и установите тонкий стержень вертикально в середине стаканчика.

- 3. Налейте в стаканчик воду до сделанной метки.
- 4. На стаканчик положите вторую линейку и прикрепите к ней пластилином тонкий стержень (стержень должен располагаться вертикально).
- 5. Направьте луч света от лазерной указки на поверхность воды возле метки на стержне и наблюдайте за преломленным лучом.
- 6. Измерьте по шкале линеек расстояние a между падающим лучом и вертикальным стержнем и расстояние b между преломленным лучом и вертикальным стержнем. Результаты измерения занесите в таблицу.

	D Iddinia,		
	Расстояние а между па-		
При переходе	дающим лучом и верти-		
	кальным стержнем, мм		
луча из воз-	Расстояние b между пре-		
духа в воду	ломленным лучом и вер-	1	
	тикальным стержнем, мм		

7. Перемещая лазерный луч к оси тонкого стержня, измените угол падения (α) луча на поверхность воды. При этом изменяется и угол

преломления (β). Произведите еще два измерения по шкале линеек (для других углов падения и преломления) расстояния а между падающим лучом и вертикальным стержнем и расстояния b между преломленным лучом и вертикальным стержнем. Результаты измерения занесите в таблицу. Обратите внимание на плоскость, в которой располагаются падающий луч, преломленный луч и перпендикуляр, восстановленный в точке падения луча к отражающей поверхности.

Вывод (о взаимном расположении падающего луча, преломленного луча и перпендикуляра, восстановленного в точке падения луча к поверхности раздела прозрачных сред, соотношении углов падения и преломления при переходе луча из воздуха в стекло, из стекла в воздух):

На уроках социализации учащиеся представляют результаты исследований с использованием презентаций, учитель подтверждает или опровергает достоверность информации, в случае необходимости дополняет или обобщает ее; организует фиксацию учащимися нового материала.

Последующие уроки (применения знаний, обобщения и систематизации изученного, диагностики уровня усвоения знаний) организуются в соответствии с их целями, которые определяются по результатам предыдущих занятий.

Применение модели организации обучения как учебного исследования учащихся по предметам естественнонаучного цикла позволяет повысить уровень обученности школьников, уровень коммуникативных и организаторских способностей, количество ребят, принявших результативное участие в исследовательской деятельности на районном и областном уровне, мотивацию учащихся к изучению учебных предметов естественнонаучного цикла. Данные мониторинга свидетельствуют о том, что большинство учеников, участников инновационной деятельности, удовлетворены организацией процесса обучения, психологически комфортно чувствуют себя на занятиях. Это говорит о создании здоровьесберегающей среды во время процесса обучения, что способствует сохранению здоровья учащихся.

ЛИТЕРАТУРА

- 1. **Выготский, Л. С.** Педагогическая психология / Л. С. Выготский, под ред. В. В. Давыдова. М.: Педагогика, 1991. — 480 с.
- Гальперин, П. Я. Лекции по психологии: учебное пособие для студентов вузов / П. Я. Гальперин. М.: Университет: Московский психолого-социальный институт, 2005. 399 с.
 Зимняя, И. А. Педагогическая психология: учебник для вузов / И. А. Зимняя. М.: Логос, 2004. 384 с.
- 4. **Кротов, В. М.** Теория и практика организации самостоятельной познавательной деятельности учащихся при изучении физики: монография / В. М. Кротов. Могилев: УО «МГУ им. А. А. Кулешова», 2011. 286 с.
- 5. **Кротов, В. М.** Технология учебного исследования в обучении физике учащихся 8-9 классов / В. М. Кротов, С. В. Доросевич. Могилев: УО «МГОИРО», 2014. 102 с.