ЭЛЕКТИВНЫЙ КУРС «ЭЛЕМЕНТЫ ТЕОРИИ ГРУПП» КАК СРЕДСТВО РАЗВИТИЯ ОБУЧАЮЩИХСЯ МАТЕМАТИЧЕСКОЙ ШКОЛЫ

В статье представлена программа элективного курса по теме «Элементы теории групп» для обучающихся старших классов, апробированная в математической школе на базе НИЛ «Школа математического развития и образования — 5⁺» ФГБОУ ВО «Тольяттинский государственный университет».

Ключевые слова: профильное обучение математике, элективный курс, числовые множества, группа, алгебраическая структура.

Согласно Концепции [3, с. 1], на старшей ступени общего образования профильное обучение является средством дифференциации и индивидуализации обучения, позволяющим более полно учитывать интересы, склонности и способности учащихся, создавать условия для обучения старшеклассников в соответствии с их профессиональными интересами и намерениями в отношении продолжения образования.

Программа элективного курса «Элементы теории групп» (17 ч.) направлена на расширение и углубление знаний учащихся по математике, а также знакомство их с одним из важнейших направлений развития абстрактной алгебры — теорией групп. Для ее реализации достаточно знаний и умений по математике, полученных в основной школе.

Актуальность предлагаемой программы определяется следующими соображениями:

- 1. Содержание школьного курса математики (числовые множества множества натуральных, целых, рациональных, действительных чисел), являясь оеновой для элективного курса, позволяет сформировать у обучающихся представления о теоретико-групповом подходе к изучению математики, знакомит их с идеей математической структуры (на примере простейших группы, полугруппы) [5].
- 2. Реализация программы, основанной на исследовательском методе и организации проектной деятельности каждого обучающегося, способствует их профессиональному самоопределению, творческой самореализации.

В результате изучения данного элективного курса обучающиеся знакомятся: с понятием множества, операциями над множествами, различными

примерами множеств; основными алгебраическими структурами (группа, кольцо, поле), примерами аддитивных и мультипликативных групп; симметрической и знакопеременной групп [2, 6]. Принятые обозначения: n — число законов, заданных на множестве; B — бинарная алгебраическая операция; A — свойство ассоциативности рассматриваемого закона композиции; K — свойство коммутативности; H — существование нейтрального элемента; C — наличие симметричного (обратного, противоположного) элемента; M — наличие указанного свойства или элемента (см. таблицу).

Алгебраические структуры

	T										
	Алгебраическая структура	I закон —				II закон —					
n		аддитивный				мультипликативный					
		Б	A	К	H_{\perp}	V	Б	A	К	H	C
1	Полугруппа (аддитивная)	*	*	1							
1	Полугруппа				7		*	*			
	(мультипликативная)		-				~	"			
1	Полугруппа (аддитивная с	*	*		*						
	нулем)	ر آ	1/2		~						
1	Полугруппа	O.	b								
	(мультипликативная с						*	*		*	
	единицей)										
1	Группа (аддитивная)	*	*		*	*					
1	Группа (мультипликативная)						*	*		*	*
1	Абелева группа (аддитивная)	*	*	*	*	*					
1	Абелева группа						*	*	*	*	*
1	(мультипликативная)							"	"		"
2	Кольцо	*	*	*	*	*	*	*			
2	Ассоциативное кольцо	*	*	*	*	*	*	*		*	
	(с единицей)										
2	Поле	ж	*	*	ж	ж	*	*	*	*	*

Приведем примеры заданий, выполняемых в рамках элективного курса. Задание 1. К какой алгебраической структуре относятся следующие множества: а) (N, +); б) $(N, +, \{0\})$; в) $(N, \cdot, \{1\})$; г) (N, \cdot) ; д) $(V_3, +)$, где V_3 — множество векторов пространства; ж) $A = \{0; a; -a\}$; з) $(R \setminus \{0\}, \cdot)$; и) $(R, +, \cdot)$; к) $(Z, +, \cdot)$. Ответ: а) аддитивная полугруппа; б) аддитивная полугруппа с нулем; в) мультипликативная полугруппа; ж) аддитивная группа; з) мультипликативная полугруппа; д) абелева группа; ж) аддитивная группа; з) мультиплика-

тивная абелева группа; и) ассоциативное кольцо с единицей; к) кольцо с единицей.

Задание 2. Доказать, что следующие преобразования n-угольников явэмдание 3. Доказать, что S_3 является группой.
В результате изучения программы данного элективного курса учащидолжны:
— правильно употреблять новые термина ляются группами: а) группа вращений правильного треугольника; б) группа вращений квадрата; в) группа вращений правильного пятиугольника.

еся должны:

- понятиями теории групп;
- знать простейшие свойства основных алгебраических структур теории групп;
- проверять, будет ли данное множество с заданной на нем операцией полугруппой, группой, абелевой группой, кольцом, полем, подгруппой;
 - исследовать внутреннюю структуру различных групп;
 - строить различные примеры основных алгебраических структур.

Программа элективного курса завершается контролем знаний и выполнением индивидуальных проектов каждым обучающимся, защита которых проходит в рамках учебно-исследовательской конференции.

Примеры тем проектов для школьников.

Группоиды [4].

План работы:

- 1. Определение группоида.
- 2. Примеры группоидов.
- 3. Доказательство и примеры существования 22 типов группоидов.
- 2. Симметрическая группа подстановок $S_{\scriptscriptstyle 4}$ и группа движений куба [1].

План работы:

- 1. Исследование симметрической группы подстановок S_4 .
- 2. Доказательство, что 48 самосовмещений куба является группой.
- 3. Установить изоморфизм между S_4 и группой движений куба.

Список использованной литературы

- 1. Белага, Э. Алгебра Древняя и Современная / Э. Белага // Квант. 1976. № 10. – C. 24–31.
- 2. Биркгоф, Г. Современная прикладная алгебра: уч. для вузов. 2-е изд., стер. / Г. Биркгоф, Т. Барти / пер. с англ. Ю. И. Манина. – СПб. : Лань, 2005. - 400 c.
- 3. Концепция профильного обучения на старшей ступени общего образования. - Москва, 2002.

- 4. Раухман, А. Группоиды / А. Раухман // Квант. № 2. С. 14–17.
- 5. Утеева, Р. А. История математических идей и открытий как средство обучения и умственного развития учащихся / Р. А. Утеева, Е. Ю. Куприенко // Актуальные проблемы обучения математике и информатике в школе и вузе в свете идей Л. С. Выготского: материалы III Международной научной конференции, 17–19 ноября 2016 г. / Под ред. М. В. Егуповой, Л. И. Боженковой. ФГБОУ ВО «Московский педагогический государственный университет» (МПГУ), Издатель Захаров С. И. («СерНа»), 2016. С. 115–119.
- 6. Холл, M. Теория группт/ M. Холл. Москва : Иноиздат, 1962. 462 с.

УДК 37.016:51

Л. А. Латоцін, Б. Д. Чабатарэўскі, г. Магілёў, Беларусь